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Phase transition
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Phase transition and zero-freeness

Lee-Yang theory: phase transition & complex zeros of partition function.

Example of zero-free region Example of spin system



Computational phase transition - an example

' A graph G = (V, E), a vertex weight 4 > 0.
| Q): set of independent set.

A
Partition function Z = Z A1 Gibbs distribution: VX & Q,uX) =—.|

Z P
h
XEQ 3
3

Y

X

Sl ooang NS T A Nl il eoaa N S AR - Tl = ~ - R e asa - ST = e vere - S = < = - S 5 Sl iasanong - - = Nad EaAN Sl et o = T N” 5 = R O



Computational phase transition - an example

| A graph G = (V, E), a vertex weight 4 > 0.

(2: set of independent set.
21X

Partition function Z = Z Al Gibbs distribution: VX € Q, u(X) = —.

Z P
h
XEQ 3
3

Y

h ¢

Sl ooang NS T A Nl il eoaa N S AR - Tl = ~ - R e asa - ST = e vere - S = < = - S 5 Sl iasanong - - = Nad EaAN Sl et o = T N” 5 = R O

Approximately sample an independent set in u.
Approximately compute the partition function Z.

(They are equivalent by [Jerrum, Valiant, Vazirani'86]).
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Computational phase transition - an example

' A graph G = (V, E), a vertex weight 4 > 0.

(2: set of independent set.
21X

Partition function Z = Z A1 Gibbs distribution: VX € Q, u(X) = —
XeQ

Zero-freeness, Z(A4) # 0

[Patel, Regts’17]
0 A 1 (A) ]
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Computational phase transition - an example

' A graph G = (V, E), a vertex weight 4 > 0.
f (2: set of independent set.

| X]

Partition function Z = Z WX Gibbs distribution: YX € Q. u(X
XeQ This implies an FPTAS by the

" Zero-freeness. Z ) 0 |polynomial interpolation method.

[Patel, Regts’17] [Bar16, PR17, LSS17]
0 T YA

Easy NP-Hard



Computational phase transition - an example

Im(4) .
phase transition!
Zero-freeness

4 A.(A) Re(4)

NP-Hard

[Sly’10, Galanis, Stefankovi¢, Vigoda'12]

Different notions of phase transition matching 4.(A):

Zero—freeness: [Patel, Regts’17]



Computational phase transition - an example

Im(4) .
phase transition!
Zero-freeness

4 A.(A) Re(4)

e NP-Hard

Glauber dynamics mixes rapidly  [Sly'i0, Galanis, Stefankovi¢, Vigoda'i2]

Different notions of phase transition matching 4.(A):
Zero—freenessz [Patel, Regts’17]

f Rapid mixing: [Chen, Liu, Vigoda'20, Chen, Liu, Vigoda’'21, Chen, Feng, Yin, Zhang’22, Chen, Elden’22]



Computational phase transition - an example
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Computational phase transition - an example

Im(4
2 phase trar
Zero-freeness Cesmmrraa,
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Glauber dynamics mixes rapidly .

Decay of correlations holds

Different notions of phase transition matching 4.(A):
Zero—freenessz [Patel, Regts’17]
} Rapid mixing: [Chen, Liu, Vigoda'20, Chen, Liu, Vigoda’'21, Chen, Feng, Yin, Zhang’22, Chen, Elden’22]

 Decay of correlations: [Weitz'00]



Computational phase transition - an example

Im(A) .
phase transition!
Zero-freeness

4 A.(A) Re(4)

~ . . o
Three notions coincide!

Glauber dynamics mixes rapidly Are they equivalent?

.,

Decay of correlations holds

Different notions of phase transition matching 4.(A):
Zero—freenessz [Patel, Regts’17]
} Rapid mixing: [Chen, Liu, Vigoda'20, Chen, Liu, Vigoda’'21, Chen, Feng, Yin, Zhang’22, Chen, Elden’22]

 Decay of correlations: [Weitz 00] ]



Connections among three notions
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Hypergraph mdependent set

Hardcore model on hypergraph
A hypergraph H = (V, &), a vertex weight 4 > 0.

(2 set of hypergraph independent set.
Partition function Z = Z AX
XEL 1X| '- Examples of hypergraph independent set

Gibbs distribution: VX € Q, u(X) = —.

® occupied
O unoccupied

R
2 : A8

We consider the k-uniform hypergraph with maximum degree A.



Hypergraph mdependent set

Hardcore model on hypergraph
A hypergraph H = (V, &), a vertex weight 4 > 0.
(2 set of hypergraph independent set.

Partition function Z = Z X

® occupied
O unoccupied

X&) 21x] '- Examples of hypergraph independent set
Gibbs distribution: VX € Q, u(X) = —

We consider the k-uniform hypergraph with maximum degree A.

For A = 1, Zis the number of HIS, u is the uniform distribution of HIS.

Easy for A < Dl2 (“sampling LLL condition”) [HSZ19, HSW21, QWZ22, FGW+23].
NP-hard for A > 5 - 2¥? [BGG+19].



Rapid mixing of Markov chains

Approximate counting/sampling hypergraph independent sets under “sampling LLL conditions”. |
[Hermon, Sly, Zhang’19]: rapid mixing of Glauber dynamics.
;' [He, Sun, Wu'21, Qiu, Wang, Zhang’22]: perfect sampler.

i[Feng, Guo, Wang, Wang, Yin'23]: local sampler. ‘

They are all based on Markov chains through the lens of percolation.




Zero-freeness

' [Galvin, McKinley, Perkins, Sarantis, Tetali'’24] shows a zero-free disk centered at origin with radius ~

{ log A ».
[Zhang'23] shows that for k-uniform linear hypergraph, there is a zero at 4 ~ — i . |

eA {

[GMPJ“Z{ 0 A, ~ ﬁ (“sampling LLL condition”)
o—© @ g /1
/ \—\ /'—-J NP-Hard [BGG+19]
[Zhang'23] Rapid mixing of Markov chains

[HSZ19, HSW21, QWZ22, FGW+23]



Zero-freeness

[Galvin, McKinley, Perkins, Sarantis, Tetali'24] shows a zero-free disk centered at origin with radius ~

eA’]
log A !

i [Zhang'23] shows that for k-uniform linear hypergraph, there is a zero at 4 ~ —

7. ero-free region is lagging behind.

Existing tools for zero-free region can not capture the uniformity.

[GMPJ“Z{ 0 A~ ﬁ (“sampling LLL condition”)
o—© @ g /1
/ \—\ /'—'J NP-Hard [BGG+19]
[Zhang'23] Rapid mixing of Markov chains

[HSZ19, HSW21, QWZ22, FGW+23]



Our result - improved zero-free region from Markov chains

For k-uniform hypergraph with maximum degree A:
1

[GMP+24]\‘ 0 Our result A. = T (“sampling LLL condition”) ,
o—© O
/ \—-\~ NP-Hard [BGG+19]
[Zhang'23]

Rapid mixing of Markov chains

|[HSZ19, HSW21, QWZ22, FGW+23]



Our result - improved zero-free region from Markov chains

For k-uniform hypergraph with maximum degree A:

[GMP+2 ] ﬂu : ¢ . .« ”
4\‘ 0 Our result ¢~ Ak _ (“sampling LLL condition”) ,
o—0O ® »
/ b-\ ~ NP-Hard [BGG+19]
[Zhang'23]

Rapid mixing of Markov chains

|[HSZ19, HSW21, QWZ22, FGW+23]

Corollaries of zero-freeness (in the same regime, informal):
1.  FPTAS for approximating the partition function based on [Barvinok’16, Patel, Regts’17, Liu, Sinclair, Srivastava’17].

2. Central limit theorem and local central limit theorem based on [Michelen, Sahasrabudhe’1g, Jain, Perkins, Sah, Sawhney’22].

3. FPTAS for approximating the number of 7-size independent sets based on [Jain, Perkins, Sah, Sawhney’22].



Technical contribution - complex measure

f A vertex weight 4 € C\{—1}.
| Q = set of hypergraph independent sets. '

Partition function Z = Z X

Xel
21X

Complex Gibbs measure: VX € Q, u(X) = — '

We analyze complex Gibbs measure in a manner of distributions.



Technical contribution - complex measure

Normalized measure: u(€2) = 1.

p(- N A)
p(A)

Independence: u(A; N A,) = u(A,) - u(A,).

Conditional measure: u( - | A) =

Law of total measure: u(B) = Z u(BNA,)
i=1

finite €2 (A;s are disjoint and UAi = (2)

Complex measure 1 over measurable space (€2, F)



Technical contribution - complex measure

For distributions, we have monotonicity:

For two events B C A, it holds that P[B] < P[A].

[

Hard to bound Easy to bound

For complex measure, monotonicity does not hold anymore!



Technical contribution - complex measure

For distributions, we have monotonicity:

For two events B C A, it holds that P[B] < P[A].

[

Hard to bound Easy to bound

For complex measure, monotonicity does not hold anymore!

B C A, but |,u(B) > ,u(A)|




Technical contribution - complex measure

For complex measure, we use “zero-one law” to recover monotonicity.

For two events B C A, it holds that

u(B)| =

ﬂ(A/\B)| =

u(A)| '

i< [u|

A is a witness of B.

The key is to design a witness A, such that u(B | A) € {0,1} and | 1(A)| is easy to deal with.




Technical contribution - complex extensions of Markov chains

Start with an independent set.

In each update:

1. Choose a vertex v u.a.r.;

2. Update v.

Classical Glauber dynamics



Technical contribution - complex extensions of Markov chains

Propose Check neighbors Final decision

Update rule of classical Glauber dynamics



Technical contribution - complex extensions of Markov chains

1
measure 1+ 2  '
/ O

A ~
measure
1+ 4

Propose Check neighbors Final decision

Update rule of complex Glauber dynamics



Technical contribution - complex extensions of Markov chains

1

1+ 4
__— O 'One can check the “stationary measure” is the

mecasure

— complex Gibbs measure.
P ® Wwe only use this as an analytic tool.
measurec 1+ 2 \ I T

Propose Check neighbors Final decision

Update rule of complex Glauber dynamics



Technical contribution - complex percolation

Decomposition: decompose each transition into oblivious part and non-oblivious part.

measurc

mecasurc

Propose Check neighbors Final decision



Technical contribution - complex percolation

Decomposition: decompose each transition into oblivious part and-nen<Qblivious part.

/ Propose unoccupied -> oblivious update
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~ <X @Propose occupied -> non-oblivious update|
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measurc

Propose Check neighbors Final decision



Technical contribution - complex percolation

Decomposition: decompose each transition into oblivious part and-nen<Qblivious part.

/ Propose unoccupied -> oblivious update
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‘Complex Glauber dynamics -> Complex percolation process|

Propose occupied -> non-oblivious update}
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Technical contribution - complex percolation

Decomposition: decompose each transition into oblivious part and non-oblivious part.
'Complex Glauber dynamics -> Complex percolation process|

Zero-freeness \
Bounding the norms of complex measures

/ for particular percolation clusters
Complex convergence



Technical contribution - complex percolation

Decomposition: decompose each transition into oblivious part and non-oblivious part.
'Complex Glauber dynamics -> Complex percolation process|

Zero-freeness \
Bounding the norms of complex measures

/ for particular percolation clusters
Complex convergence

We use our zero-one law to bound these norms.



Technical contribution - complex percolation

We use complex percolation to analyze the complex systematic scan Glauber dynamics.

For k-uniform hypergraph with maximum degree A:

1
0 Ae B A2k _ 1

(“sampling LLL condition”)

{ .
>
|

® ®
NP-Hard [BGG+19]

We show in this strip, complex systematic scan Glauber dynamics converges and Z(4) # 0.



Proof overview

Zero-freeness

By standard edge-wise self-reducibility, it suffices
to bound the norm of a complex marginal

| Complex Gibbs measure » measure.
 |pglo, =1 <1



Proof overview

Zero-freeness

{ Contributions of the initial state |
;. Complex Gibbs measure ‘ ;'f T-step complex Glauber
- uylo, =1 <1 | ' dynamics ¢, = 11¢l

)
I f
&
&

Contributions on the initial state

Expressing the complex Gibbs measure
via the complex Glauber dynamics.



Proof overview
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Contributions dependent on the initial state

“Complex convergence”

This part diminishes to 0.
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Proof overview

Zero-freeness

l' Complex Gibbs measure »
(o, = 1] <1

|

“Complex convergence”
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Summary

We define the complex extensions of Markov chains and use it to improve the zero-free region of hardcore
imodel on hypergraph.

As corollaries, we obtain efficient algorithms for:

i 1. approximating the partition function under the “sampling LLL condition”,

{2. approximating the number of z-size hypergraph independent sets. '



Summary

We define the complex extensions of Markov chains and use it to improve the zero-free region of hardcore
tmodel on hypergraph.

As corollaries, we obtain efficient algorithms for:

i; approximating the partition function under the “sampling LLL condition”,

{2. approximating the number of #-size hypergraph independent sets. '

Open problems

41. Zero-freeness for general CSPs.

2. Does complex convergence imply zero-freeness? :jf



Summary

We define the complex extensions of Markov chains and use it to improve the zero-free region of hardcore
imodel on hypergraph.

As corollaries, we obtain efficient algorithms for:

i 1. approximating the partition function under the “sampling LLL condition”,

12. approximating the number of t-size hypergraph independent sets. '

Thanks! Any questions?

Open problems |

1. Zero-freeness for general CSPs.

12. Does complex convergence imply zero-freeness? :



