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Computational phase transition - an example

Hardcore model  
A graph , a vertex weight . 

: set of independent set. 

Partition function . Gibbs distribution: .

G = (V, E) λ > 0
Ω

Z = ∑
X∈Ω

λ|X| ∀X ∈ Ω, μ(X) =
λ|X|

Z
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Partition function . Gibbs distribution: .

G = (V, E) λ > 0
Ω

Z = ∑
X∈Ω
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(They are equivalent by [Jerrum, Valiant, Vazirani'86]). 

Approximately sample an independent set in . 
Approximately compute the partition function .

μ
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Computational phase transition - an example

λc(Δ)

Easy

0

NP-Hard

Hardcore model  
A graph , a vertex weight . 

: set of independent set. 

Partition function . Gibbs distribution: .

G = (V, E) λ > 0
Ω

Z = ∑
X∈Ω

λ|X| ∀X ∈ Ω, μ(X) =
λ|X|

ZThis implies an FPTAS by the 
polynomial interpolation method. 

[Bar16, PR17, LSS17]
Zero-freeness,  

[Patel, Regts’17]
Z(λ) ≠ 0



Computational phase transition - an example

λc(Δ)
Zero-freeness

0

NP-Hard  
[Sly’10, Galanis, Štefankovič, Vigoda’12]

phase transition!

Different notions of phase transition matching : 

Zero-freeness: [Patel, Regts’17]  

  

λc(Δ)

Re(λ)

Im(λ)



Computational phase transition - an example

Glauber dynamics mixes rapidly 

Different notions of phase transition matching : 

Zero-freeness: [Patel, Regts’17]  

Rapid mixing: [Chen, Liu, Vigoda’20, Chen, Liu, Vigoda’21, Chen, Feng, Yin, Zhang’22, Chen, Elden’22] 
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Rapid mixing: Glauber dynamics mixes rapidly 
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Computational phase transition - an example

Glauber dynamics mixes rapidly 

Decay of correlations holds

Different notions of phase transition matching : 

Zero-freeness: [Patel, Regts’17]  

Rapid mixing: [Chen, Liu, Vigoda’20, Chen, Liu, Vigoda’21, Chen, Feng, Yin, Zhang’22, Chen, Elden’22] 

Decay of correlations: [Weitz’06]

λc(Δ)

λc(Δ)
Zero-freeness

0

NP-Hard  
[Sly’10, Galanis, Štefankovič, Vigoda’12]

phase transition!
Im(λ)
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Computational phase transition - an example

Glauber dynamics mixes rapidly 

Decay of correlations holds

Different notions of phase transition matching : 

Zero-freeness: [Patel, Regts’17]  

Rapid mixing: [Chen, Liu, Vigoda’20, Chen, Liu, Vigoda’21, Chen, Feng, Yin, Zhang’22, Chen, Elden’22] 

Decay of correlations: [Weitz’06]

λc(Δ)

λc(Δ)
Zero-freeness

0

NP-Hard  
[Sly’10, Galanis, Štefankovič, Vigoda’12]

phase transition!

Three notions coincide!   
Are they equivalent?

Im(λ)

Re(λ)



Connections among three notions

zero-freeness

decay of correlationsrapid mixing

[Gam23, Reg23, SY24]

[PR19, LSS19, SS19]
[AASV21, CLV21]

[AJK+24]

[ALO20, CLV20]

Our work

0



Hypergraph independent set
Hardcore model on hypergraph 
A hypergraph , a vertex weight . 

 set of hypergraph independent set. 
Partition function .  

Gibbs distribution: .

H = (V, ℰ) λ > 0
Ω

Z = ∑
X∈Ω

λ|X|

∀X ∈ Ω, μ(X) =
λ|X|

Z

Examples of hypergraph independent set

occupied
unoccupied

We consider the -uniform hypergraph with maximum degree .k Δ



Hypergraph independent set
Hardcore model on hypergraph 
A hypergraph , a vertex weight . 

 set of hypergraph independent set. 
Partition function .  

Gibbs distribution: .

H = (V, ℰ) λ > 0
Ω

Z = ∑
X∈Ω

λ|X|

∀X ∈ Ω, μ(X) =
λ|X|

Z

Examples of hypergraph independent set

occupied
unoccupied

For ,  is the number of HIS,  is the uniform distribution of HIS. 

Easy        for  (“sampling LLL condition”)  [HSZ19, HSW21, QWZ22, FGW+23]. 

NP-hard for  [BGG+19].

λ = 1 Z μ

Δ ≲ 2k/2

Δ ≥ 5 ⋅ 2k/2

We consider the -uniform hypergraph with maximum degree .k Δ



Approximate counting/sampling hypergraph independent sets under “sampling LLL conditions”. 

[Hermon, Sly, Zhang’19]: rapid mixing of Glauber dynamics. 

[He, Sun, Wu’21, Qiu, Wang, Zhang’22]: perfect sampler. 

[Feng, Guo, Wang, Wang, Yin’23]: local sampler.

Rapid mixing of Markov chains

They are all based on Markov chains through the lens of percolation.



Zero-freeness

0 λc ≈
1

Δ2/k − 1

Rapid mixing of Markov chains 

 [HSZ19, HSW21, QWZ22, FGW+23]

NP-Hard [BGG+19]

(“sampling LLL condition”)[GMP+24]

[Zhang’23]

[Galvin, McKinley, Perkins, Sarantis, Tetali'24] shows a zero-free disk centered at origin with radius . 

[Zhang'23] shows that for k-uniform linear hypergraph, there is a zero at .

≈
1

eΔ

λ ≈ −
log Δ

Δ

λ



Zero-freeness

0 λc ≈
1

Δ2/k − 1

Rapid mixing of Markov chains 

 [HSZ19, HSW21, QWZ22, FGW+23]

NP-Hard [BGG+19]

(“sampling LLL condition”)[GMP+24]

[Zhang’23]

[Galvin, McKinley, Perkins, Sarantis, Tetali'24] shows a zero-free disk centered at origin with radius . 

[Zhang'23] shows that for k-uniform linear hypergraph, there is a zero at .

≈
1

eΔ

λ ≈ −
log Δ

Δ
Zero-free region is lagging behind. 

Existing tools for zero-free region can not capture the uniformity.

λ



Our result - improved zero-free region from Markov chains
For -uniform hypergraph with maximum degree :k Δ

0

NP-Hard [BGG+19]

[GMP+24]
Our result λc ≈

1
Δ2/k − 1 (“sampling LLL condition”)

[Zhang’23] Rapid mixing of Markov chains 

 [HSZ19, HSW21, QWZ22, FGW+23]
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Our result - improved zero-free region from Markov chains
For -uniform hypergraph with maximum degree :k Δ

0

NP-Hard [BGG+19]

[GMP+24]
Our result λc ≈

1
Δ2/k − 1 (“sampling LLL condition”)

[Zhang’23] Rapid mixing of Markov chains 

 [HSZ19, HSW21, QWZ22, FGW+23]

Corollaries of zero-freeness (in the same regime, informal): 

1. FPTAS for approximating the partition function based on [Barvinok’16, Patel, Regts’17, Liu, Sinclair, Srivastava’17]. 

2. Central limit theorem and local central limit theorem based on [Michelen, Sahasrabudhe’19, Jain, Perkins, Sah, Sawhney’22]. 

3. FPTAS for approximating the number of -size independent sets based on [Jain, Perkins, Sah, Sawhney’22].t

λ



Technical contribution - complex measure

A vertex weight . 
 = set of hypergraph independent sets. 

Partition function . 

Complex Gibbs measure: .

λ ∈ ℂ\{−1}
Ω

Z = ∑
X∈Ω

λ|X|

∀X ∈ Ω, μ(X) =
λ|X|

Z

We analyze complex Gibbs measure in a manner of distributions.



Complex measure  over measurable space μ (Ω, ℱ)

finite  Ω

−1 + i

−i

2

Normalized measure: . 

Conditional measure:  ( ). 

Independence: . 

Law of total measure:  

( s are disjoint and )

μ(Ω) = 1

μ( ⋅ ∣ A) =
μ( ⋅ ∧ A)

μ(A)
μ(A) ≠ 0

μ(A1 ∩ A2) = μ(A1) ⋅ μ(A2)

μ(B) =
m

∑
i=1

μ(B ∩ Ai)

Ai ⋃
i

Ai = Ω

Technical contribution - complex measure



For distributions, we have monotonicity:

For two events , it holds that .B ⊆ A ℙ[B] ≤ ℙ[A]

Hard to bound Easy to bound

For complex measure, monotonicity does not hold anymore!

Technical contribution - complex measure



For two events , it holds that .B ⊆ A ℙ[B] ≤ ℙ[A]

Hard to bound Easy to bound

For complex measure, monotonicity does not hold anymore!

−1 + i

−i

2A B , but B ⊆ A μ(B) > μ(A)

For distributions, we have monotonicity:

Technical contribution - complex measure



For complex measure, we use “zero-one law” to recover monotonicity.

For two events , it holds that 

                                   .

B ⊆ A

μ(B) = μ(A ∧ B) = μ(A) ⋅ μ(B ∣ A) ≤ μ(A)

The key is to design a witness , such that  and  is easy to deal with. A μ(B ∣ A) ∈ {0,1} μ(A)

Technical contribution - complex measure

A is a witness of B.



Technical contribution - complex extensions of Markov chains

Classical Glauber dynamics

Start with an independent set. 

In each update: 

1. Choose a vertex  u.a.r.; 

2. Update .

v

v



Technical contribution - complex extensions of Markov chains

prob. 
1

1 + λ

prob. 
λ

1 + λ

Propose Check neighbors Final decision

Update rule of classical Glauber dynamics
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Technical contribution - complex extensions of Markov chains

measure 
1

1 + λ

measure 
λ

1 + λ

Propose

Update rule of complex Glauber dynamics

Check neighbors Final decision

One can check the “stationary measure” is the 
complex Gibbs measure. 
We only use this as an analytic tool.



measure 
1

1 + λ

measure 
λ

1 + λ

Propose Check neighbors Final decision

Decomposition: decompose each transition into oblivious part and non-oblivious part.

Technical contribution - complex percolation
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Propose occupied -> non-oblivious update

Decomposition: decompose each transition into oblivious part and non-oblivious part.

Complex Glauber dynamics -> Complex percolation process
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Decomposition: decompose each transition into oblivious part and non-oblivious part.

Zero-freeness

Complex convergence

Bounding the norms of complex measures 
for particular percolation clusters

Complex Glauber dynamics -> Complex percolation process

Technical contribution - complex percolation



Decomposition: decompose each transition into oblivious part and non-oblivious part.

Complex Glauber dynamics -> Complex percolation process

Technical contribution - complex percolation

We use our zero-one law to bound these norms.

Zero-freeness

Complex convergence

Bounding the norms of complex measures 
for particular percolation clusters



Technical contribution - complex percolation

For -uniform hypergraph with maximum degree :k Δ

NP-Hard [BGG+19]

λc ≈
1

Δ2/k − 1 (“sampling LLL condition”)0

We use complex percolation to analyze the complex systematic scan Glauber dynamics.

We show in this strip, complex systematic scan Glauber dynamics converges and .Z(λ) ≠ 0

λ



Proof overview

Zero-freeness

By standard edge-wise self-reducibility, it suffices 
to bound the norm of a complex marginal 
measure.Complex Gibbs measure

μH(σe = 1|e|) < 1



Proof overview

Contributions independent of the initial state

T-step complex Glauber 
dynamics σe = 1|e|

Contributions dependent on the initial state

=

Complex percolation

Zero-freeness

Expressing the complex Gibbs measure 
via the complex Glauber dynamics.

Complex Gibbs measure
μH(σe = 1|e|) < 1 +
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Contributions dependent on the initial state

+



Proof overview

≈

This part diminishes to .0

“Complex convergence”

Zero-freeness

Complex percolation

Complex Gibbs measure
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T-step complex Glauber 
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Contributions dependent on the initial state
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Proof overview

“Complex convergence”

This part .< 1
Zero-freeness

Complex percolation

This part diminishes to .0

≈Complex Gibbs measure
μH(σe = 1|e|) < 1

T-step complex Glauber 
dynamics σe = 1|e| =

Contributions independent of the initial state

Contributions dependent on the initial state

+



Summary 
We define the complex extensions of Markov chains and use it to improve the zero-free region of hardcore 
model on hypergraph. 

As corollaries, we obtain efficient algorithms for: 

1. approximating the partition function under the “sampling LLL condition”, 

2. approximating the number of -size hypergraph independent sets.t



Open problems 
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2. approximating the number of -size hypergraph independent sets.t



Open problems 
1. Zero-freeness for general CSPs. 

2. Does complex convergence imply zero-freeness?

Thanks! Any questions?

Summary 
We define the complex extensions of Markov chains and use it to improve the zero-free region of hardcore 
model on hypergraph. 

As corollaries, we obtain efficient algorithms for: 

1. approximating the partition function under the “sampling LLL condition”, 

2. approximating the number of -size hypergraph independent sets.t


