# Phase Transitions via Complex Extensions of Markov Chains

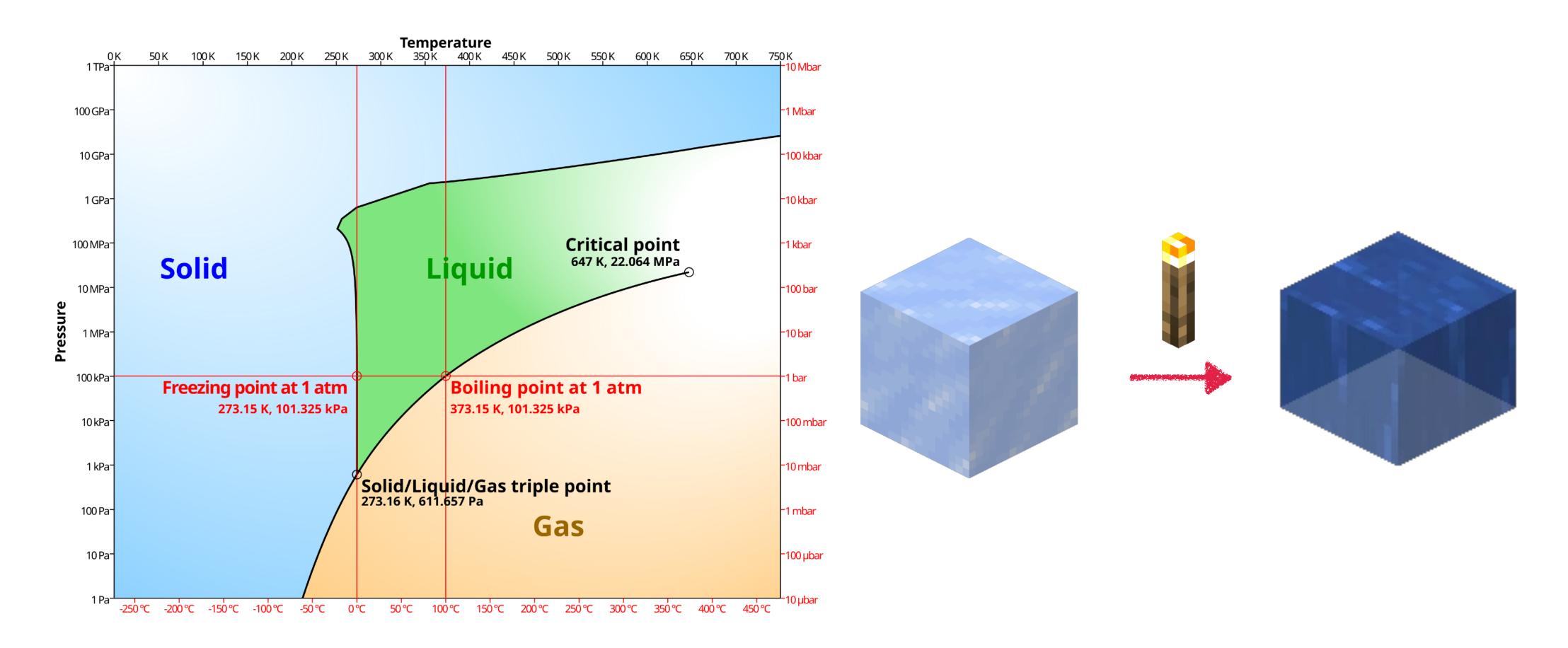
Yixiao Yu

Nanjing University

Joint work with Jingcheng Liu, Chunyang Wang and Yitong Yin

STOC 2025

#### Phase transition



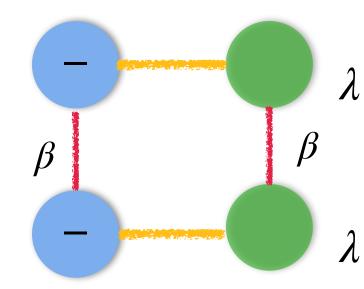
water's phase transition

#### Phase transition and zero-freeness

Lee-Yang theory: phase transition  $\approx$  complex zeros of partition function.



Example of zero-free region



Example of spin system

Hardcore model

A graph G = (V, E), a vertex weight  $\lambda > 0$ .

 $\Omega$ : set of independent set.

Partition function 
$$Z = \sum_{X \in \Omega} \lambda^{|X|}$$
. Gibbs distribution:  $\forall X \in \Omega, \mu(X) = \frac{\lambda^{|X|}}{Z}$ .

Hardcore model

A graph G = (V, E), a vertex weight  $\lambda > 0$ .

 $\Omega$ : set of independent set.

Partition function 
$$Z = \sum_{X \in \Omega} \lambda^{|X|}$$
. Gibbs distribution:  $\forall X \in \Omega, \mu(X) = \frac{\lambda^{|X|}}{Z}$ .

Approximately sample an independent set in  $\mu$ .

Approximately compute the partition function Z.

(They are equivalent by [Jerrum, Valiant, Vazirani'86]).

#### Hardcore model

A graph G = (V, E), a vertex weight  $\lambda > 0$ .

 $\Omega$ : set of independent set.

Partition function 
$$Z = \sum_{X \in \Omega} \lambda^{|X|}$$
. Gibbs distribution:  $\forall X \in \Omega, \mu(X) = \frac{\lambda^{|X|}}{Z}$ .

#### phase transition!

0

$$\lambda_c(\Delta)$$

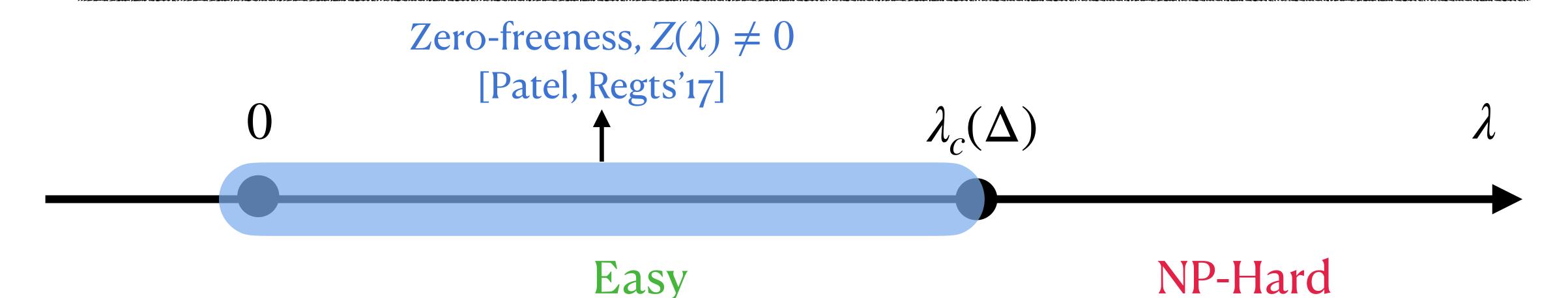
X

Hardcore model

A graph G = (V, E), a vertex weight  $\lambda > 0$ .

 $\Omega$ : set of independent set.

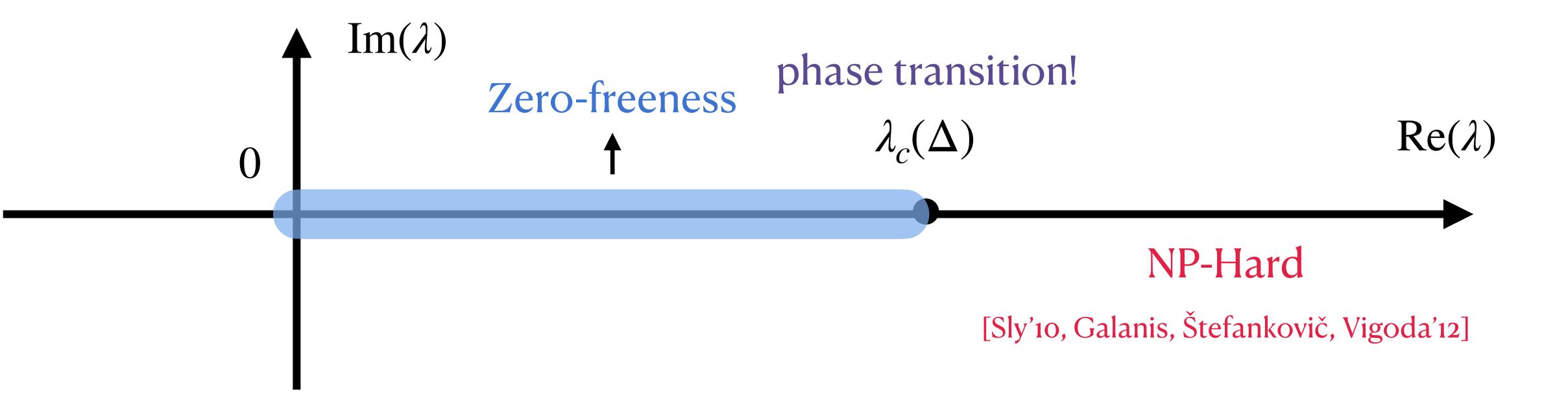
Partition function 
$$Z = \sum_{X \in \Omega} \lambda^{|X|}$$
. Gibbs distribution:  $\forall X \in \Omega, \mu(X) = \frac{\lambda^{|X|}}{Z}$ .



Hardcore model A graph G = (V, E), a vertex weight  $\lambda > 0$ .  $\Omega$ : set of independent set. Partition function  $Z = \sum_{i} \lambda^{|X|}$ . Gibbs distribution:  $\forall X \in \Omega, \mu(X) = \frac{\lambda^{i}}{1 - 1}$ This implies an FPTAS by the  $X \in \Omega$ polynomial interpolation method. Zero-freeness,  $Z(\lambda) \neq 0$ [Bar16, PR17, LSS17] [Patel, Regts'17]

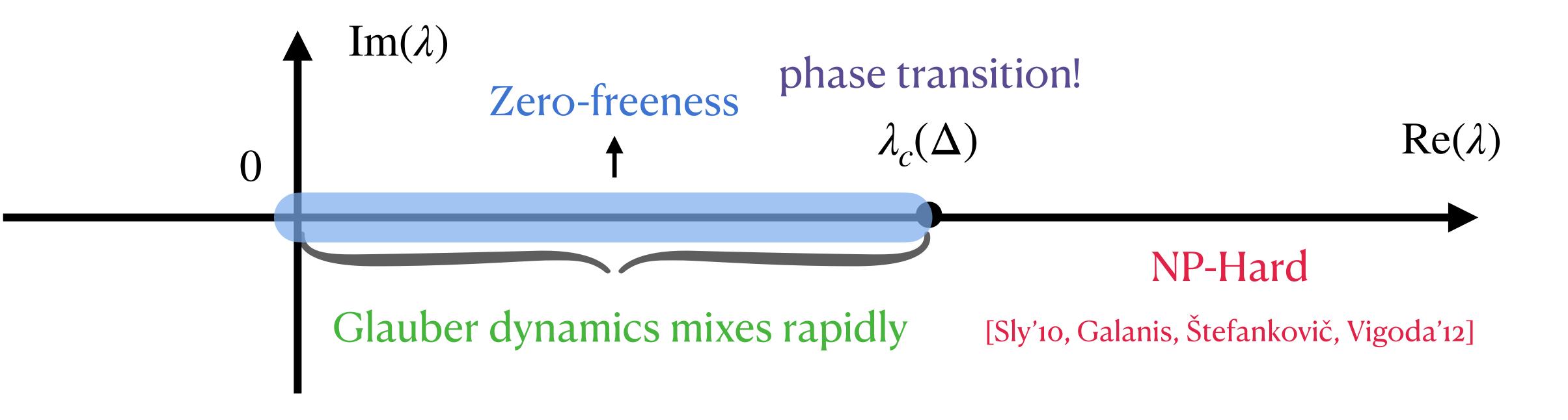
Easy

NP-Hard



Different notions of phase transition matching  $\lambda_c(\Delta)$ :

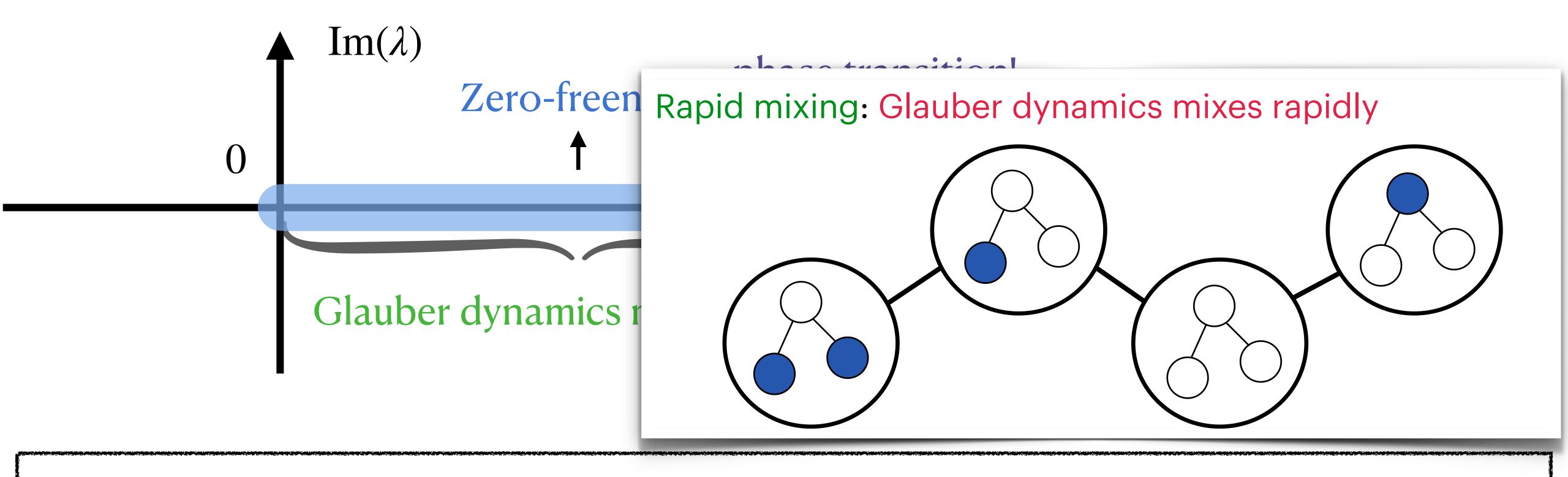
Zero-freeness: [Patel, Regts'17]



Different notions of phase transition matching  $\lambda_c(\Delta)$ :

Zero-freeness: [Patel, Regts'17]

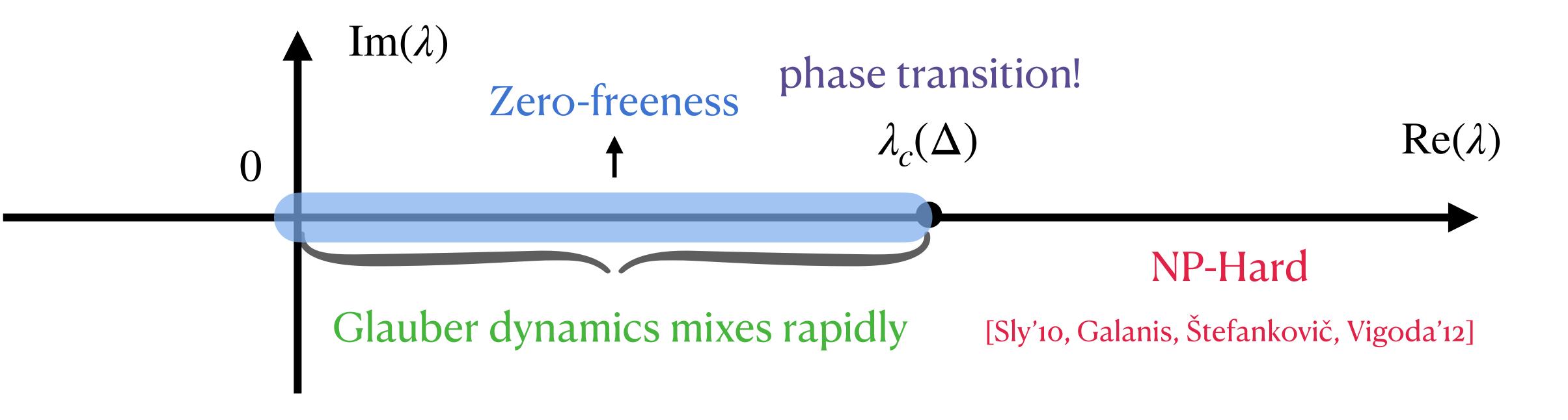
Rapid mixing: [Chen, Liu, Vigoda'20, Chen, Liu, Vigoda'21, Chen, Feng, Yin, Zhang'22, Chen, Elden'22]



Different notions of phase transition matching  $\lambda_c(\Delta)$ :

Zero-freeness: [Patel, Regts'17]

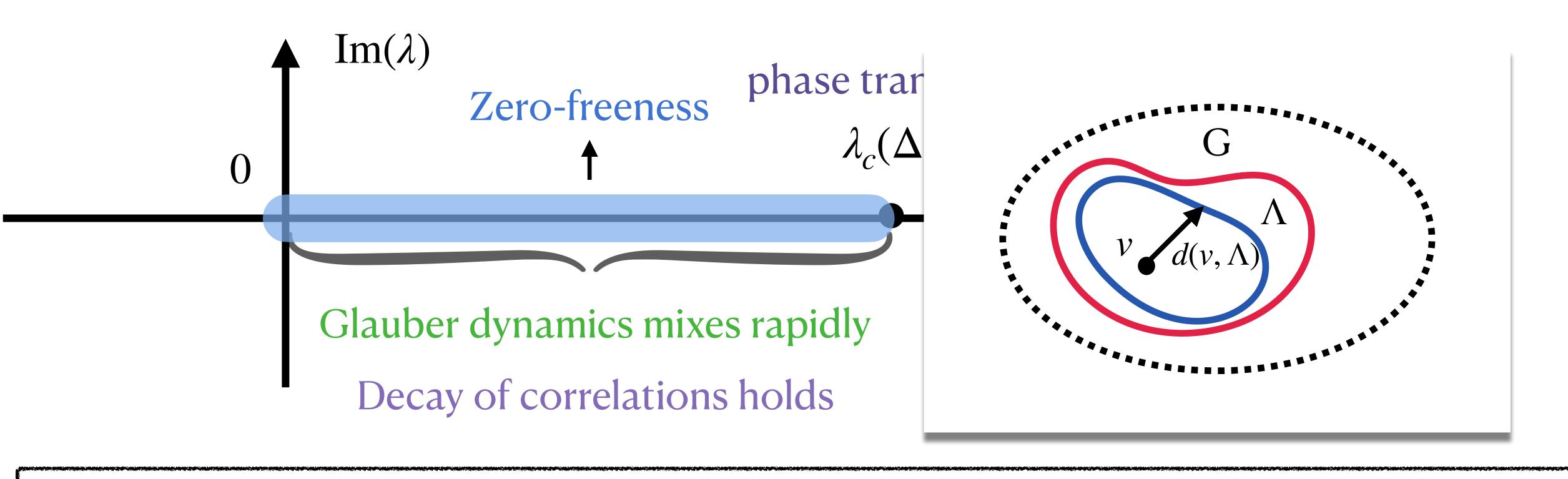
Rapid mixing: [Chen, Liu, Vigoda'20, Chen, Liu, Vigoda'21, Chen, Feng, Yin, Zhang'22, Chen, Elden'22]



Different notions of phase transition matching  $\lambda_c(\Delta)$ :

Zero-freeness: [Patel, Regts'17]

Rapid mixing: [Chen, Liu, Vigoda'20, Chen, Liu, Vigoda'21, Chen, Feng, Yin, Zhang'22, Chen, Elden'22]

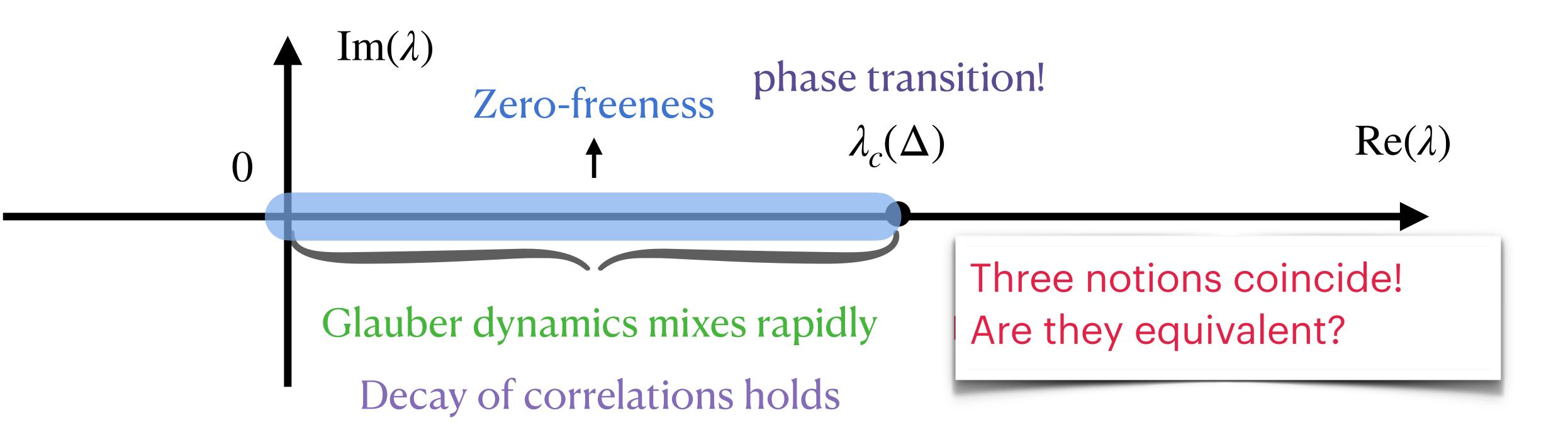


Different notions of phase transition matching  $\lambda_c(\Delta)$ :

Zero-freeness: [Patel, Regts'17]

Rapid mixing: [Chen, Liu, Vigoda'20, Chen, Liu, Vigoda'21, Chen, Feng, Yin, Zhang'22, Chen, Elden'22]

Decay of correlations: [Weitz'06]



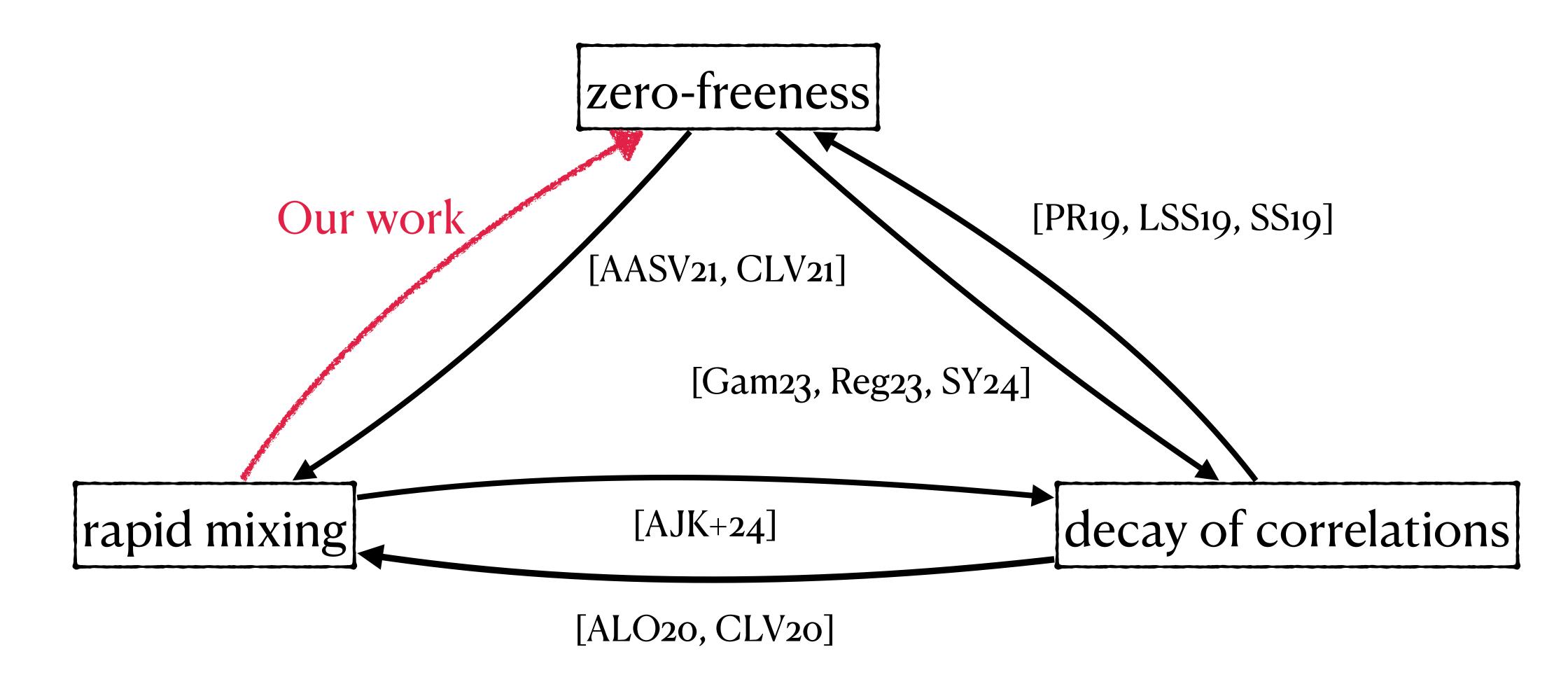
Different notions of phase transition matching  $\lambda_c(\Delta)$ :

Zero-freeness: [Patel, Regts'17]

Rapid mixing: [Chen, Liu, Vigoda'20, Chen, Liu, Vigoda'21, Chen, Feng, Yin, Zhang'22, Chen, Elden'22]

Decay of correlations: [Weitz'06]

#### Connections among three notions



#### Hypergraph independent set

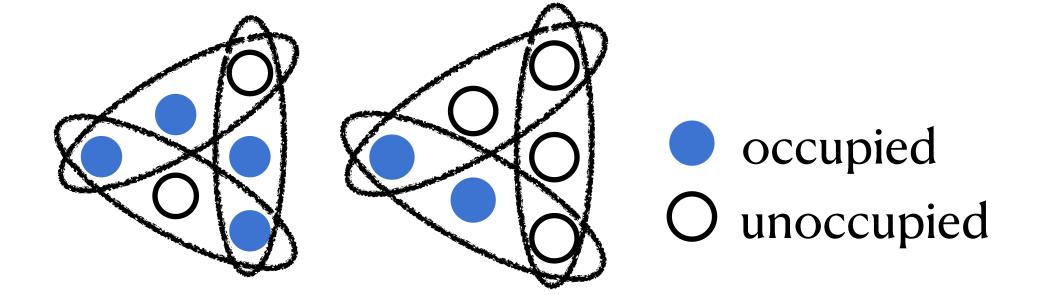
Hardcore model on hypergraph

A hypergraph  $H=(V,\mathscr{E})$ , a vertex weight  $\lambda>0$ .

 $\Omega$  set of hypergraph independent set.

Partition function 
$$Z = \sum_{X \in \Omega} \lambda^{|X|}$$
.

Gibbs distribution: 
$$\forall X \in \Omega, \mu(X) = \frac{\lambda^{|X|}}{Z}$$
.



Examples of hypergraph independent set

We consider the k-uniform hypergraph with maximum degree  $\Delta$ .

#### Hypergraph independent set

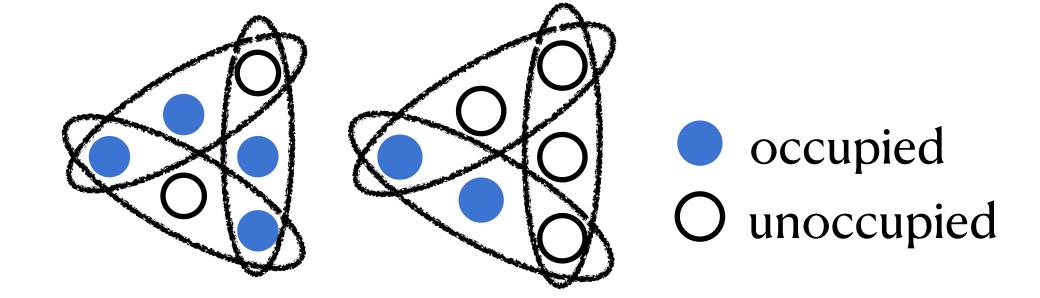
Hardcore model on hypergraph

A hypergraph  $H=(V,\mathscr{E})$ , a vertex weight  $\lambda>0$ .

 $\Omega$  set of hypergraph independent set.

Partition function 
$$Z = \sum_{X \in \Omega} \lambda^{|X|}$$
.

Gibbs distribution: 
$$\forall X \in \Omega, \mu(X) = \frac{\lambda^{|X|}}{Z}$$
.



Examples of hypergraph independent set

We consider the k-uniform hypergraph with maximum degree  $\Delta$ .

For  $\lambda = 1$ , Z is the number of HIS,  $\mu$  is the uniform distribution of HIS.

Easy for  $\Delta \lesssim 2^{k/2}$  ("sampling LLL condition") [HSZ19, HSW21, QWZ22, FGW+23].

NP-hard for  $\Delta \geq 5 \cdot 2^{k/2}$  [BGG+19].

#### Rapid mixing of Markov chains

Approximate counting/sampling hypergraph independent sets under "sampling LLL conditions".

[Hermon, Sly, Zhang'19]: rapid mixing of Glauber dynamics.

[He, Sun, Wu'21, Qiu, Wang, Zhang'22]: perfect sampler.

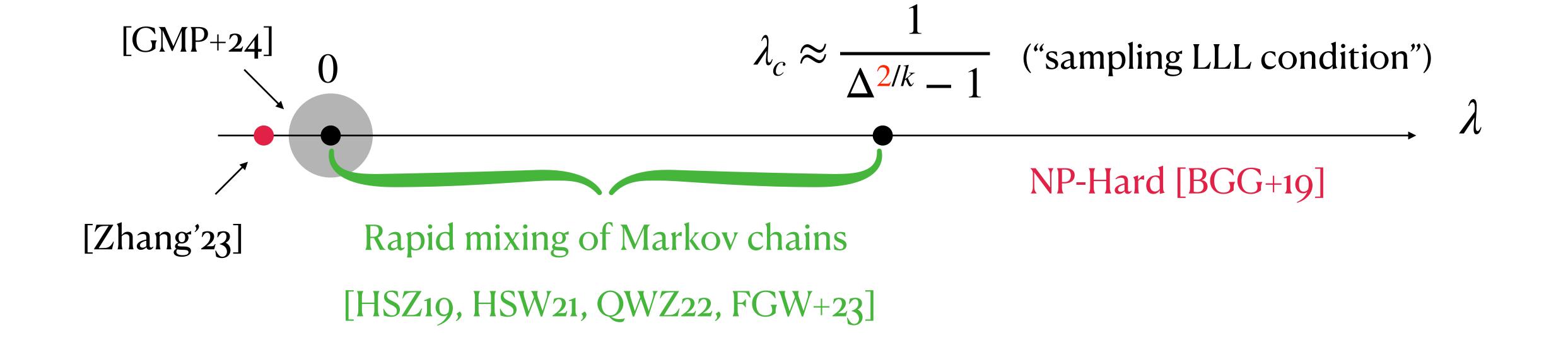
[Feng, Guo, Wang, Wang, Yin'23]: local sampler.

They are all based on Markov chains through the lens of percolation.

#### Zero-freeness

[Galvin, McKinley, Perkins, Sarantis, Tetali'24] shows a zero-free disk centered at origin with radius  $pprox rac{1}{e\Delta}$ .

[Zhang'23] shows that for k-uniform linear hypergraph, there is a zero at  $\lambda \approx -\frac{\log \Delta}{\Delta}$ .



#### Zero-freeness

[Galvin, McKinley, Perkins, Sarantis, Tetali'24] shows a zero-free disk centered at origin with radius  $pprox rac{1}{\mathrm{e}\Delta}$ .

[Zhang'23] shows that for k-uniform linear hypergraph, there is a zero at  $\lambda \approx -\frac{\log \Delta}{\lambda}$ .

Zero-free region is lagging behind.

Existing tools for zero-free region can not capture the uniformity.

[GMP+24] 
$$\lambda_c \approx \frac{1}{\Delta^{2/k} - 1}$$
 ("sampling LLL condition") 
$$\lambda_c \approx \frac{1}{\Delta^{2/k} - 1}$$
 NP-Hard [BGG+19]

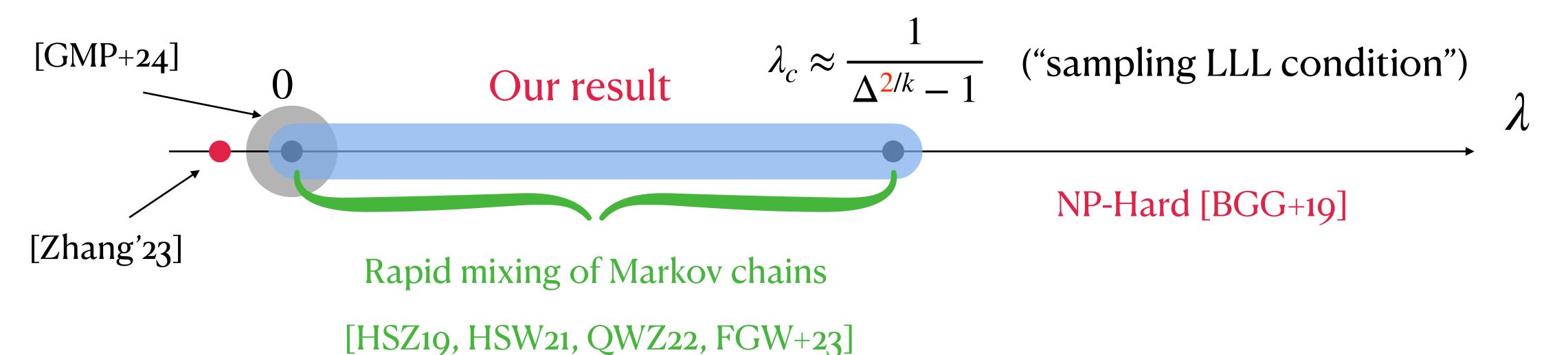
[Zhang'23]

Rapid mixing of Markov chains

[HSZ19, HSW21, QWZ22, FGW+23]

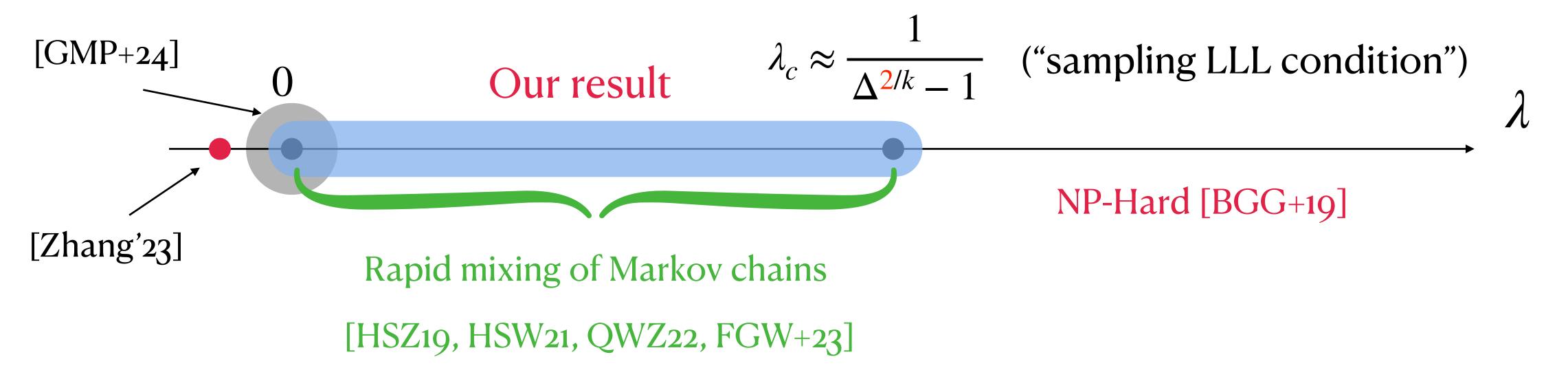
#### Our result - improved zero-free region from Markov chains

For k-uniform hypergraph with maximum degree  $\Delta$ :



#### Our result - improved zero-free region from Markov chains

For k-uniform hypergraph with maximum degree  $\Delta$ :



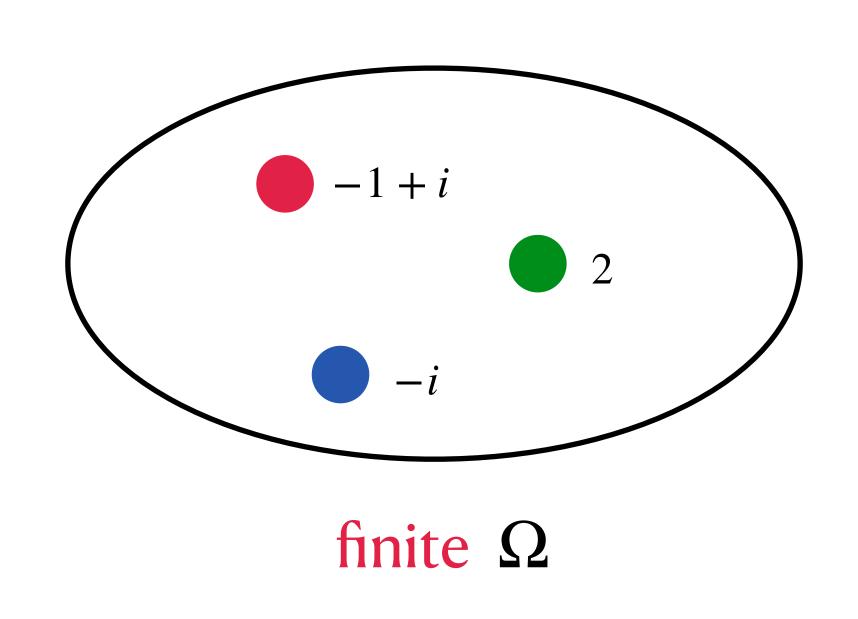
#### Corollaries of zero-freeness (in the same regime, informal):

- 1. FPTAS for approximating the partition function based on [Barvinok'16, Patel, Regts'17, Liu, Sinclair, Srivastava'17].
- 2. Central limit theorem and local central limit theorem based on [Michelen, Sahasrabudhe'19, Jain, Perkins, Sah, Sawhney'22].
- 3. FPTAS for approximating the number of *t*-size independent sets based on [Jain, Perkins, Sah, Sawhney'22].

A vertex weight 
$$\lambda \in \mathbb{C} \setminus \{-1\}$$
.  
 $\Omega$  = set of hypergraph independent sets.  
Partition function  $Z = \sum_{X \in \Omega} \lambda^{|X|}$ .

Complex Gibbs measure:  $\forall X \in \Omega, \mu(X) = \frac{\lambda^{|X|}}{Z}$ .

We analyze complex Gibbs measure in a manner of distributions.



Normalized measure:  $\mu(\Omega) = 1$ .

Conditional measure: 
$$\mu(\cdot \mid A) = \frac{\mu(\cdot \land A)}{\mu(A)} \ (\mu(A) \neq 0).$$

Independence:  $\mu(A_1 \cap A_2) = \mu(A_1) \cdot \mu(A_2)$ .

Law of total measure: 
$$\mu(B) = \sum_{i=1}^{m} \mu(B \cap A_i)$$

$$(A_i$$
s are disjoint and  $\bigcup_i A_i = \Omega)$ 

Complex measure  $\mu$  over measurable space  $(\Omega, \mathcal{F})$ 

For distributions, we have monotonicity:

For two events 
$$B \subseteq A$$
, it holds that  $\mathbb{P}[B] \leq \mathbb{P}[A]$ .



Hard to bound Easy to bound

For complex measure, monotonicity does not hold anymore!

For distributions, we have monotonicity:

For two events 
$$B \subseteq A$$
, it holds that  $\mathbb{P}[B] \leq \mathbb{P}[A]$ .



Hard to bound Easy to bound

For complex measure, monotonicity does not hold anymore!

$$A \qquad 2 \qquad B \qquad B \subseteq A, \text{ but } \left| \mu(B) \right| > \left| \mu(A) \right|$$

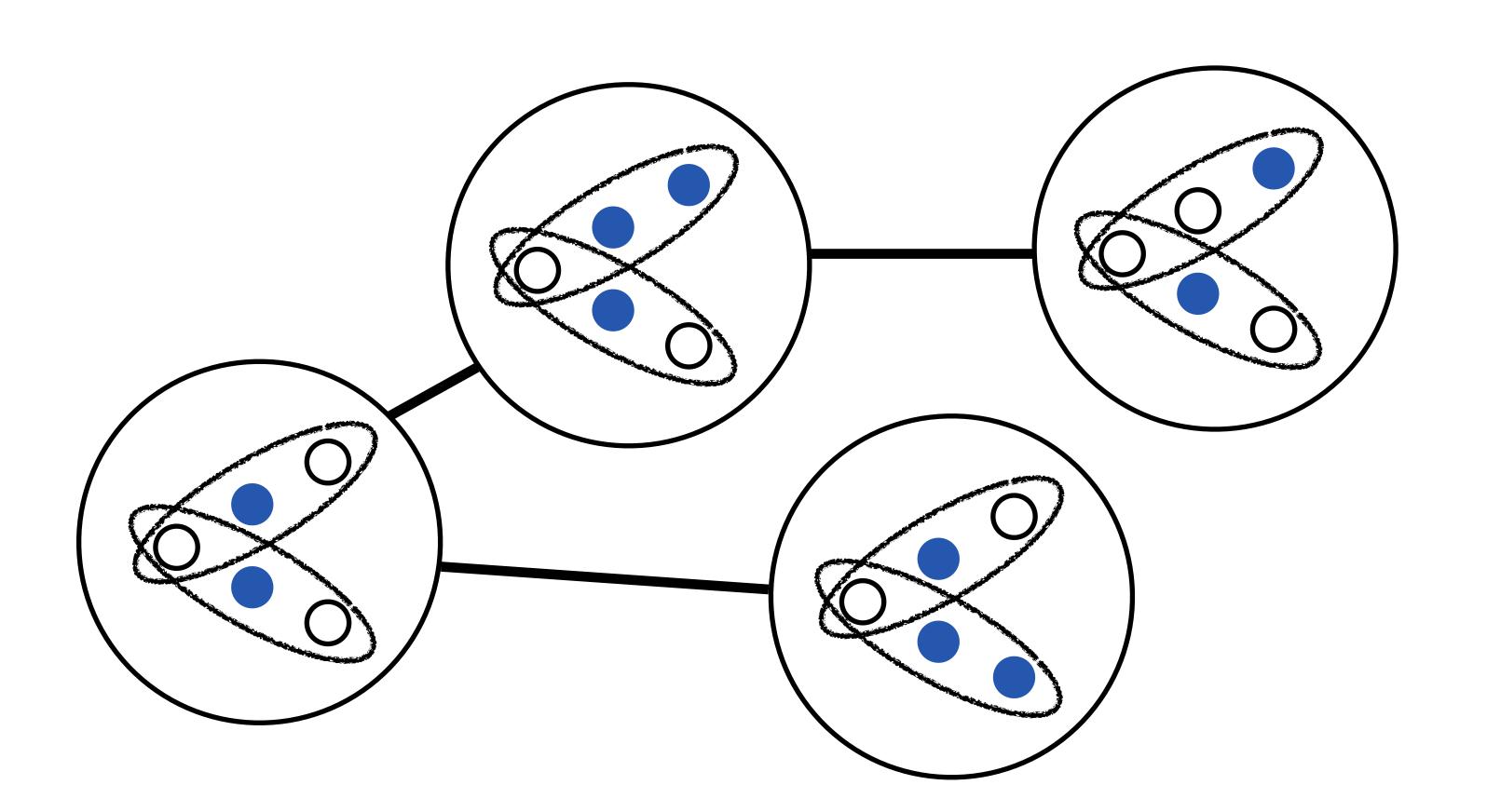
For complex measure, we use "zero-one law" to recover monotonicity.

For two events  $B \subseteq A$ , it holds that

$$|\mu(B)| = |\mu(A \wedge B)| = |\mu(A)| \cdot |\mu(B \mid A)| \le |\mu(A)|.$$

A is a witness of B.

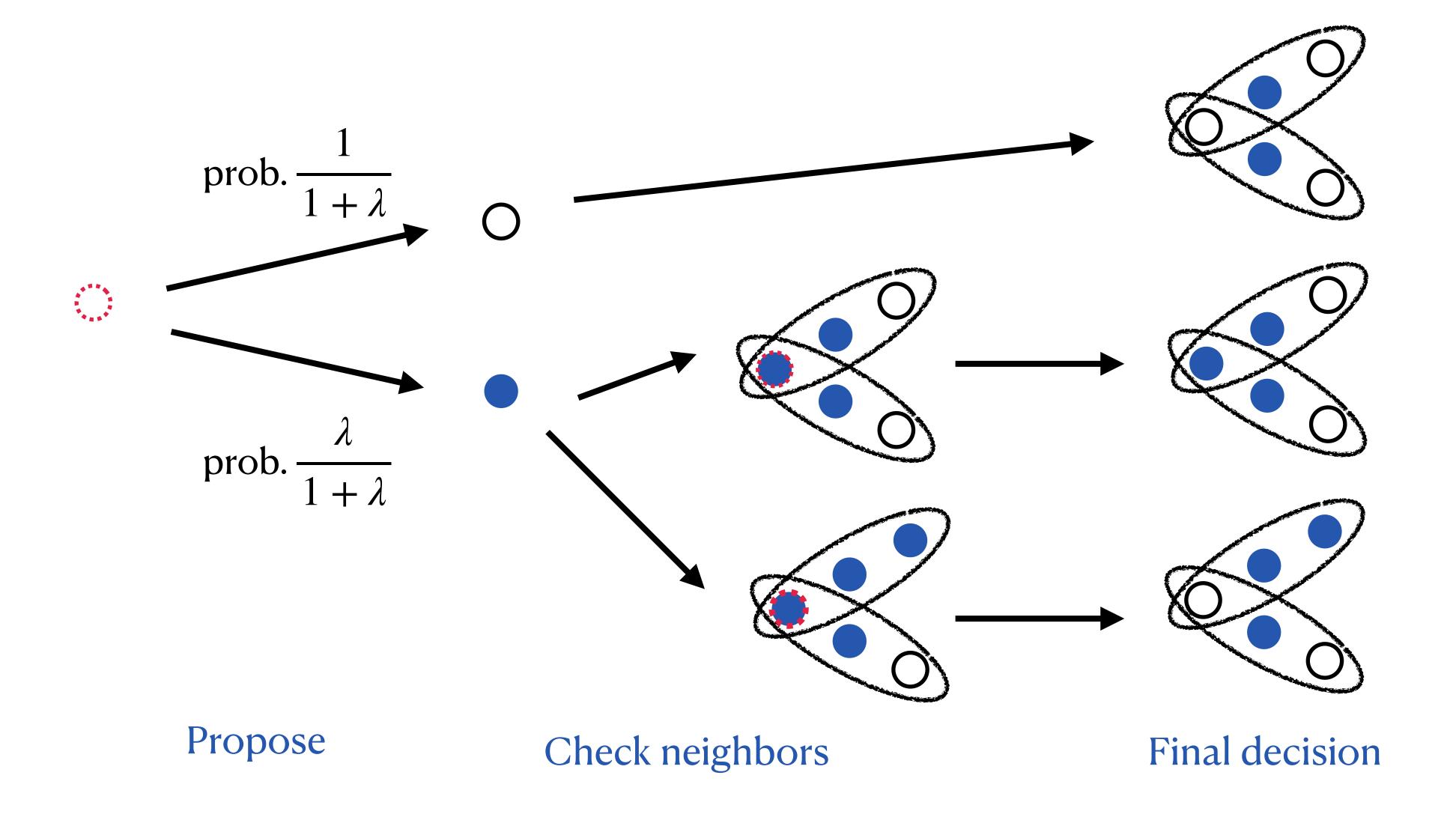
The key is to design a witness A, such that  $\mu(B \mid A) \in \{0,1\}$  and  $|\mu(A)|$  is easy to deal with.



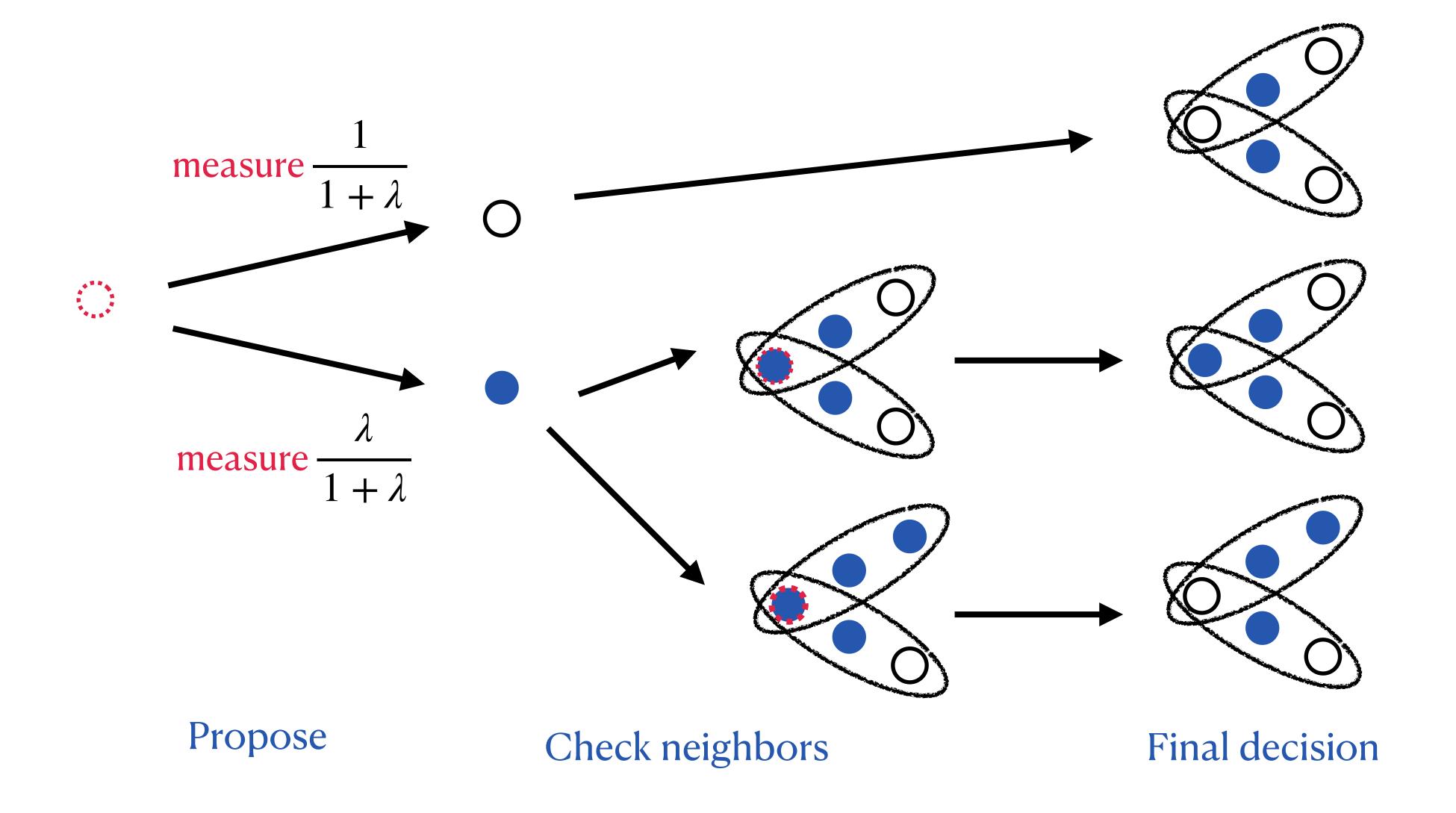
Start with an independent set. In each update:

- 1. Choose a vertex v u.a.r.;
- 2. Update v.

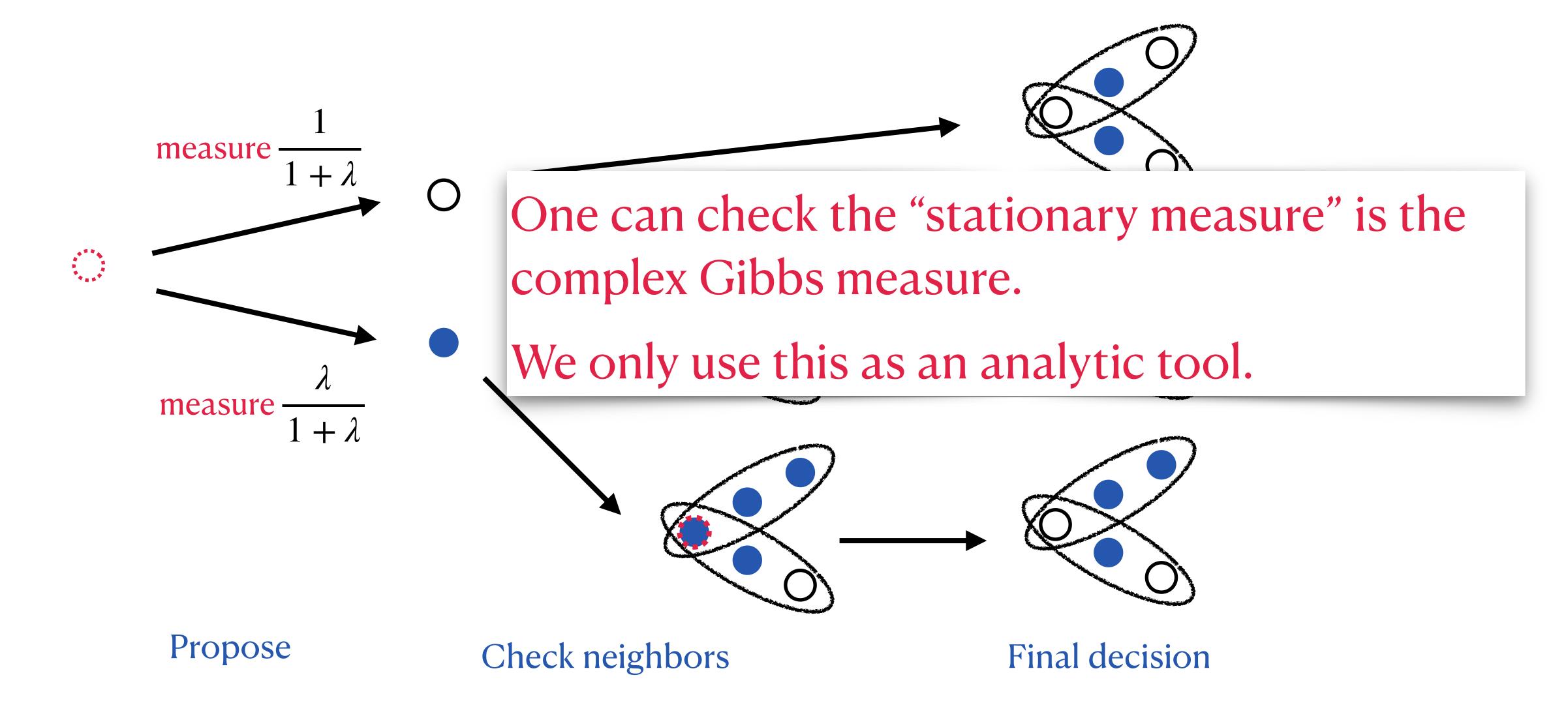
Classical Glauber dynamics



Update rule of classical Glauber dynamics

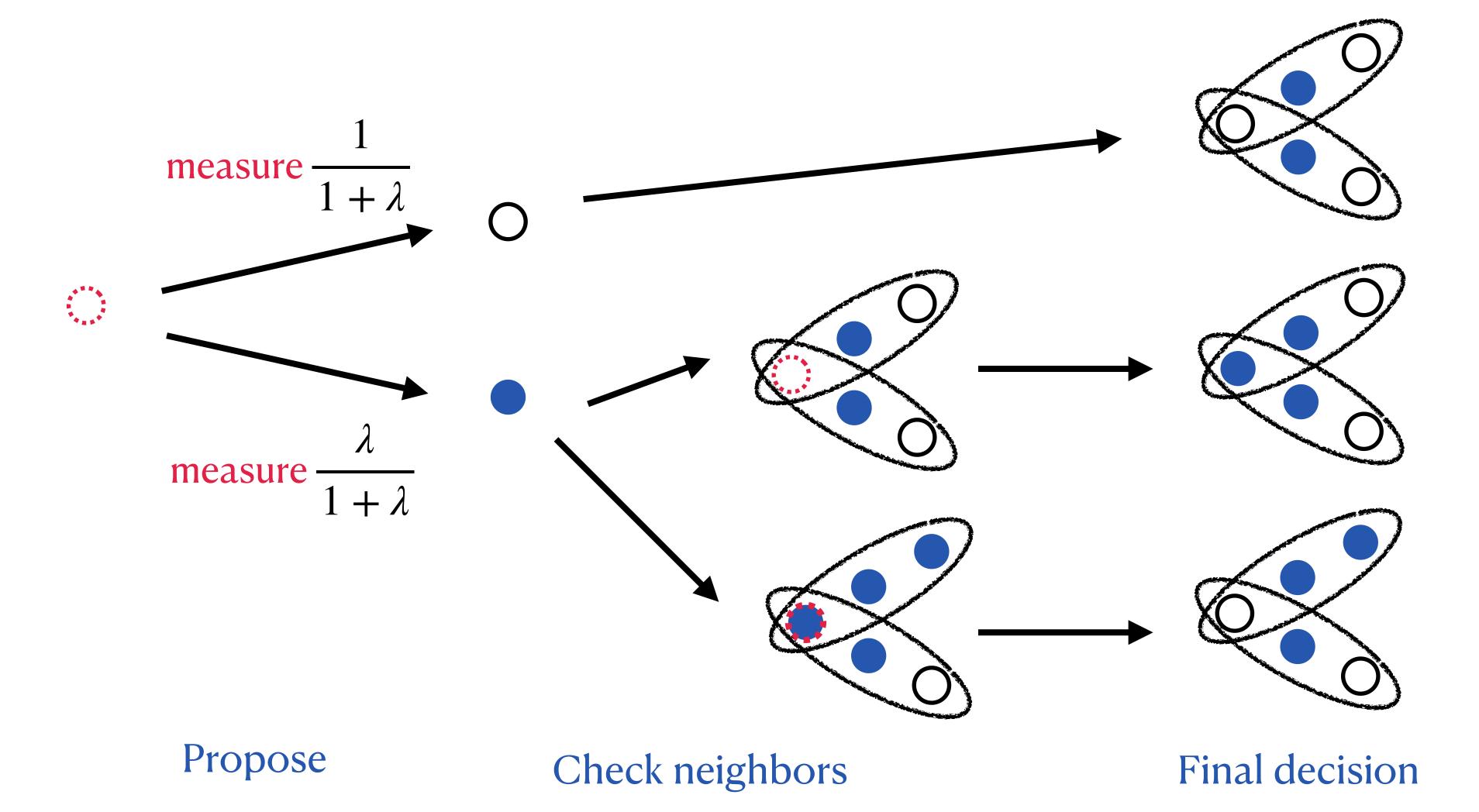


Update rule of complex Glauber dynamics

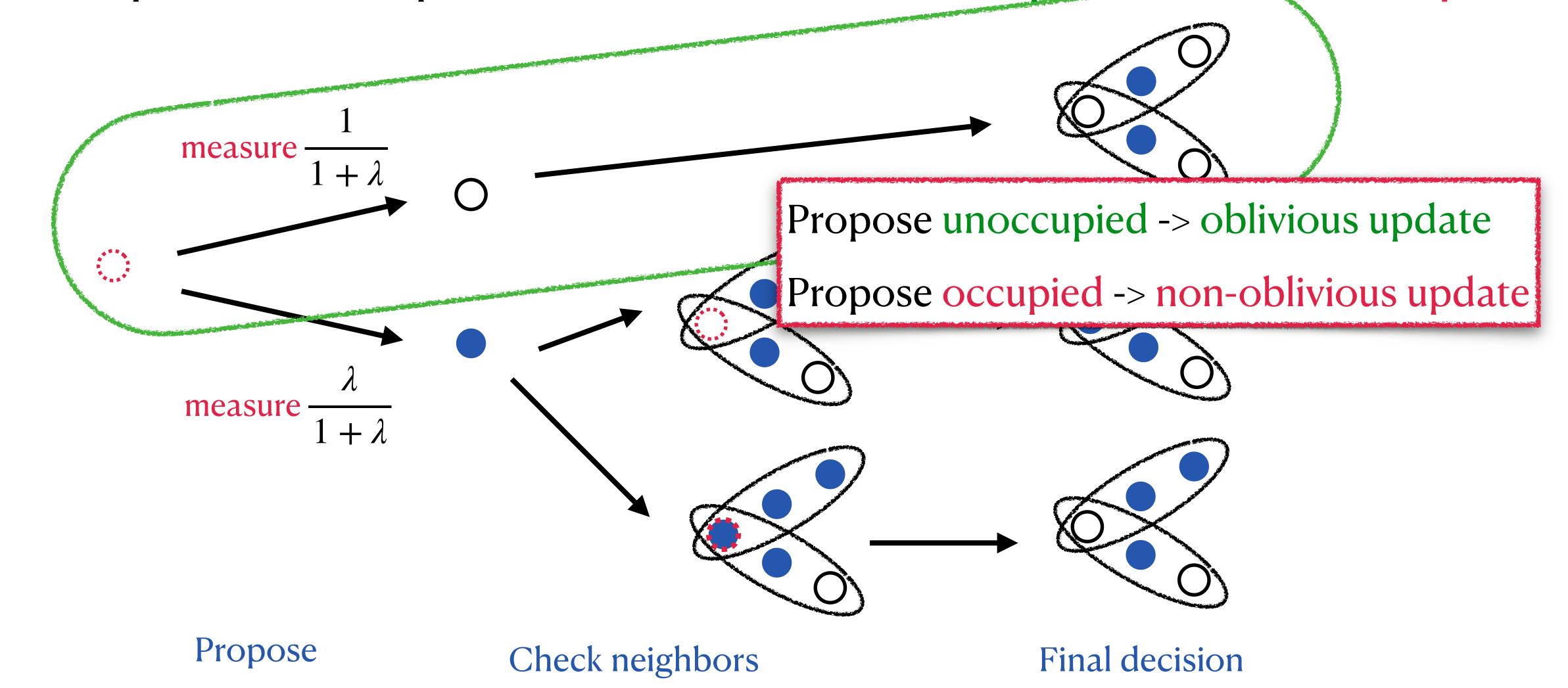


Update rule of complex Glauber dynamics

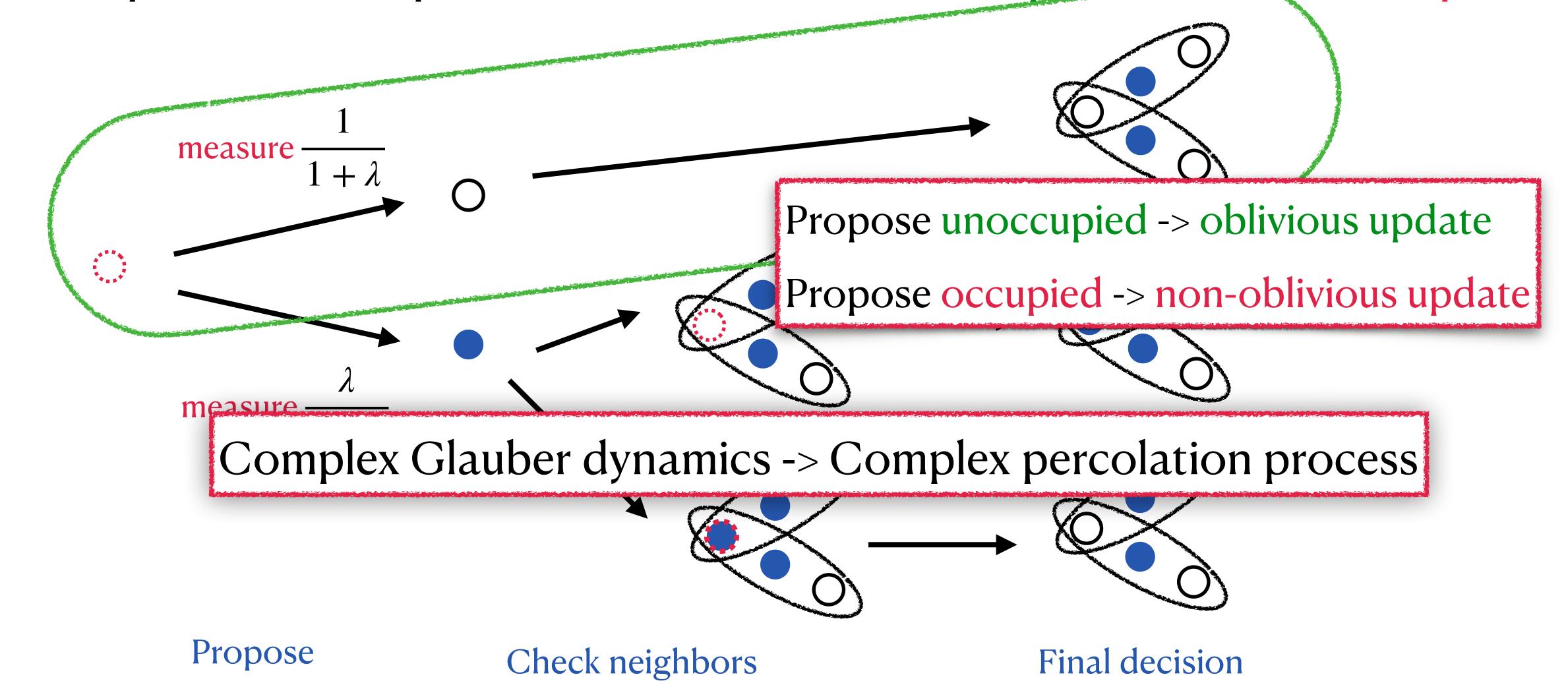
Decomposition: decompose each transition into oblivious part and non-oblivious part.



Decomposition: decompose each transition into oblivious part and non-oblivious part.



Decomposition: decompose each transition into oblivious part and non-oblivious part.



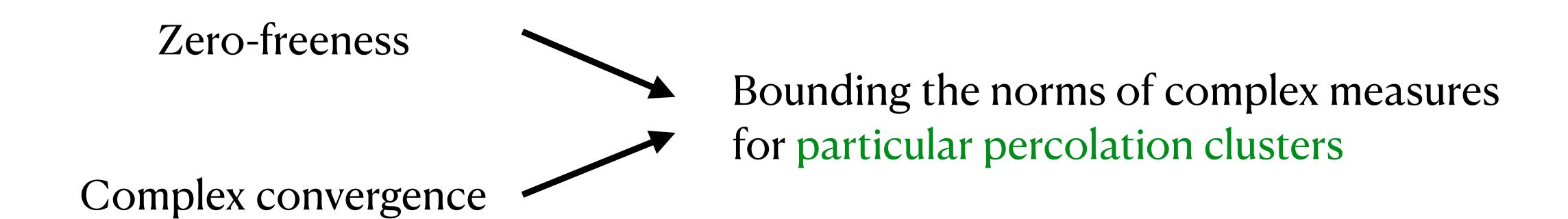
Decomposition: decompose each transition into oblivious part and non-oblivious part.

Complex Glauber dynamics -> Complex percolation process



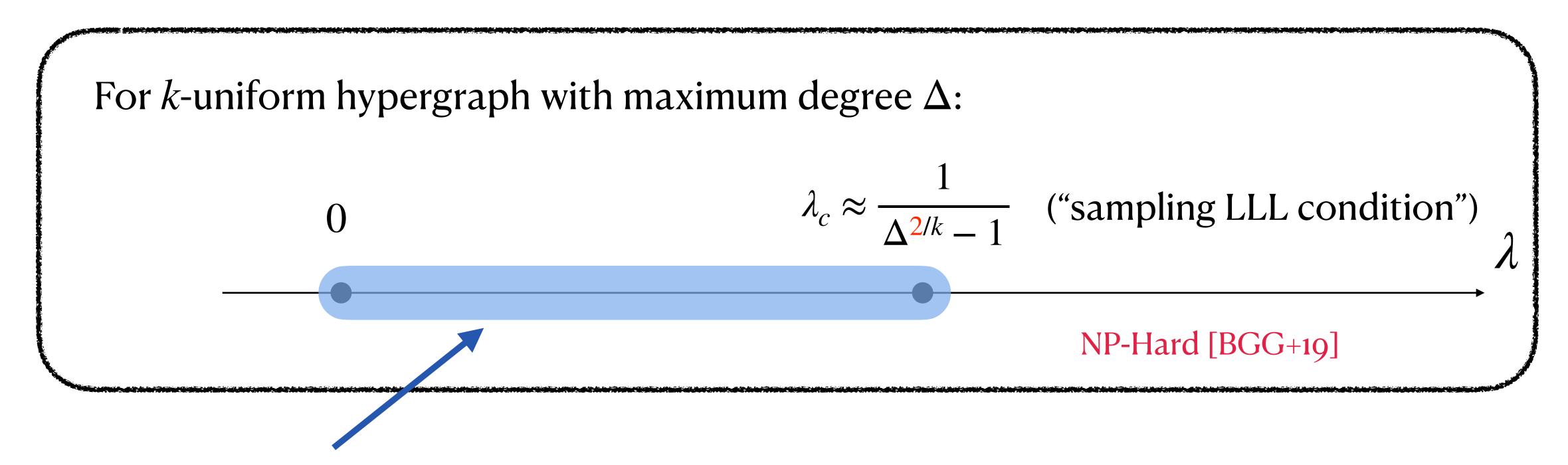
Decomposition: decompose each transition into oblivious part and non-oblivious part.

Complex Glauber dynamics -> Complex percolation process



We use our zero-one law to bound these norms.

We use complex percolation to analyze the complex systematic scan Glauber dynamics.



We show in this strip, complex systematic scan Glauber dynamics converges and  $Z(\lambda) \neq 0$ .

Zero-freeness



Complex Gibbs measure

$$\mu_H(\sigma_e = 1^{|e|}) \bigg| < 1$$

By standard edge-wise self-reducibility, it suffices to bound the norm of a complex marginal measure.



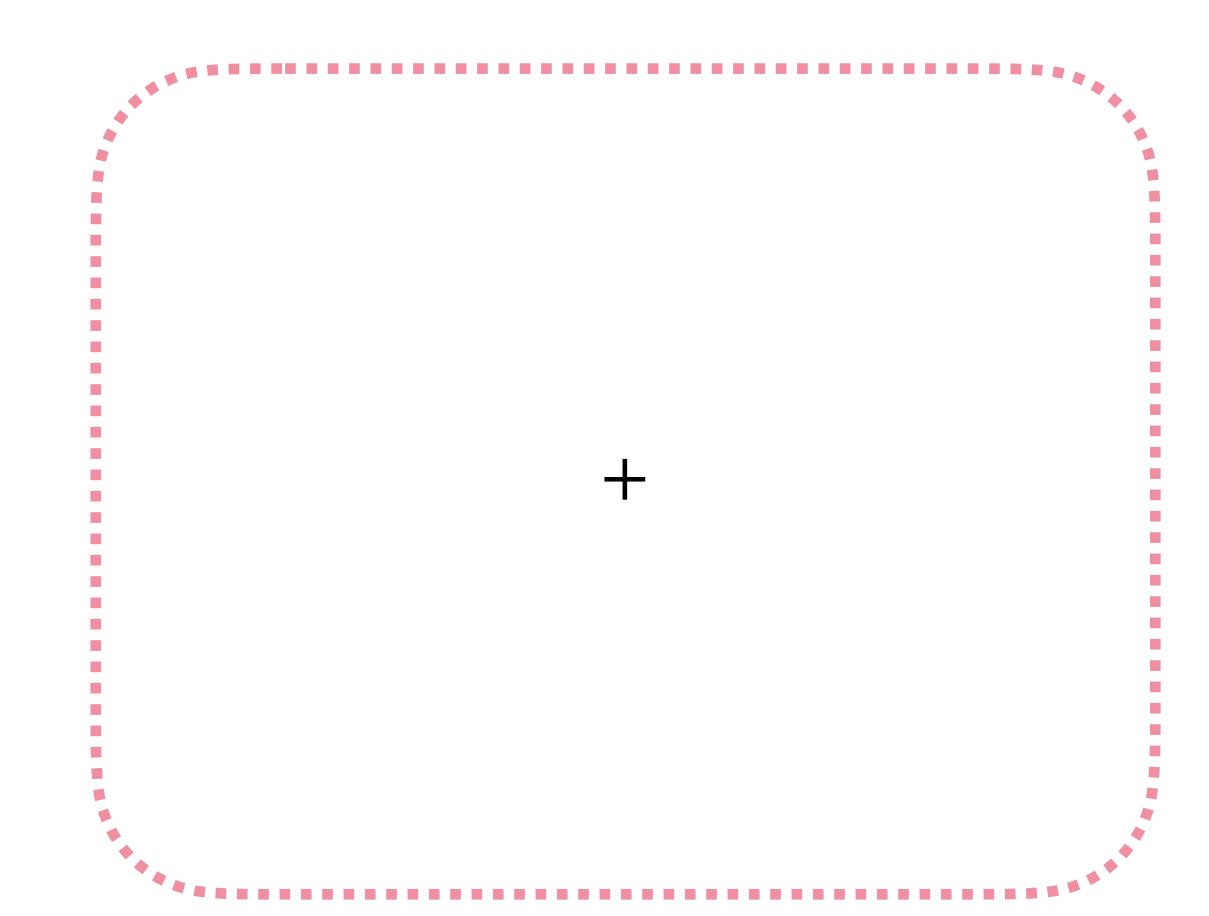


Complex Gibbs measure

$$\left| \mu_H(\sigma_e = 1^{|e|}) \right| < 1$$

T-step complex Glauber dynamics  $\sigma_e = 1^{|e|}$ 

Expressing the complex Gibbs measure via the complex Glauber dynamics.



Zero-freeness



Complex Gibbs measure

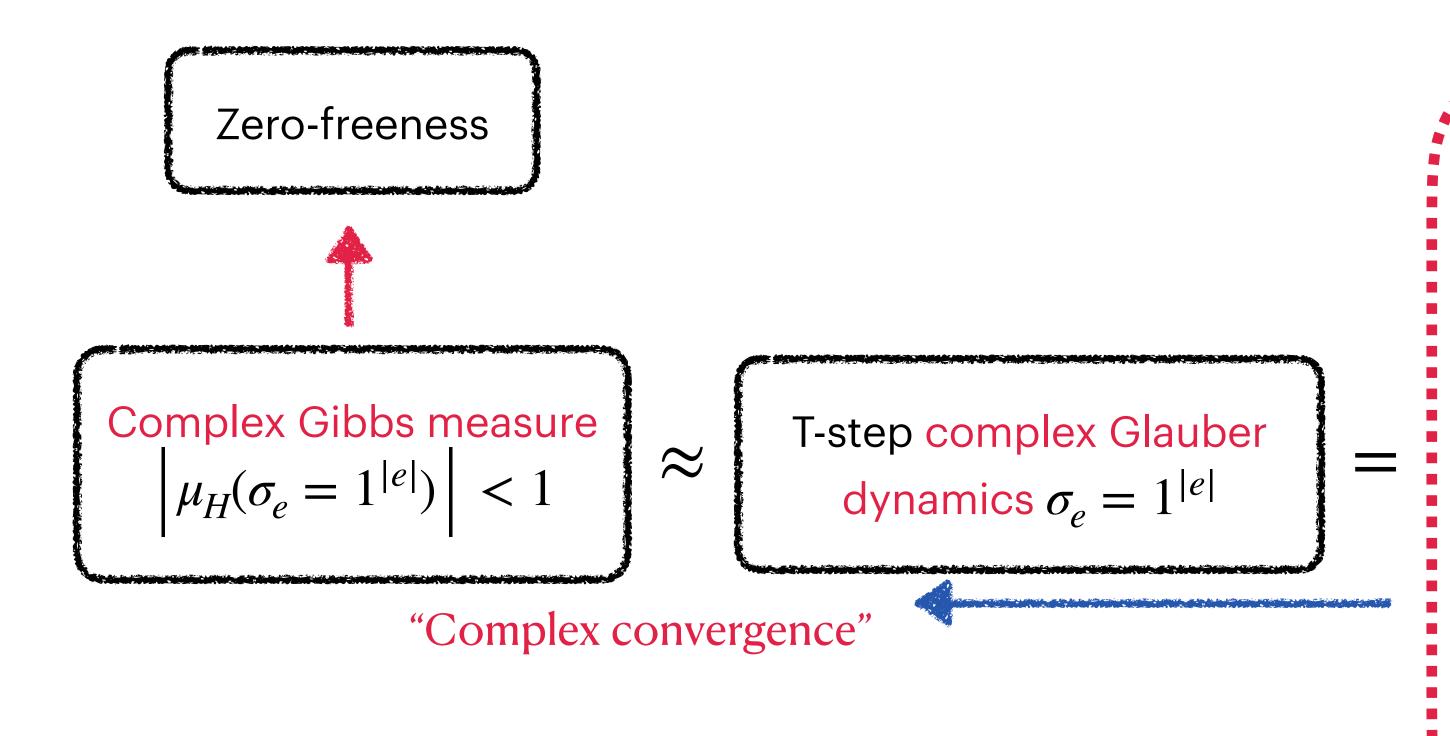
$$\left| \mu_H(\sigma_e = 1^{|e|}) \right| < 1$$

T-step complex Glauber dynamics  $\sigma_e = 1^{|e|}$ 

Contributions independent of the initial state

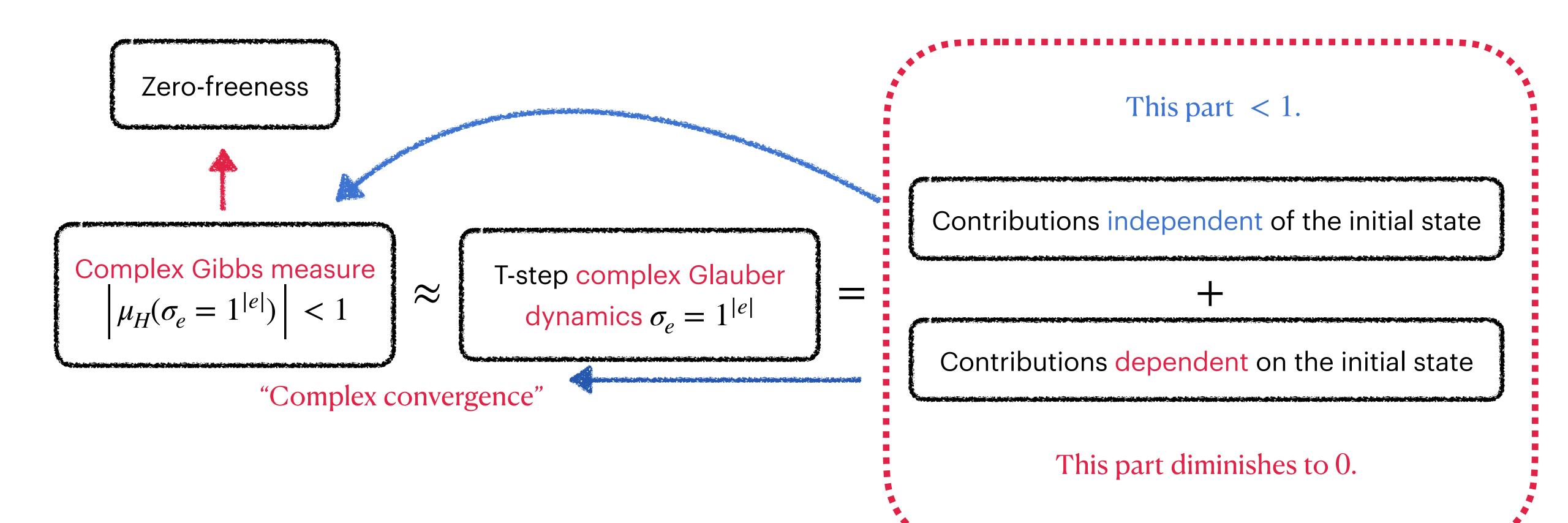
+

Contributions dependent on the initial state



Contributions independent of the initial state Contributions dependent on the initial state This part diminishes to 0.

Complex percolation



Complex percolation

#### Summary

We define the complex extensions of Markov chains and use it to improve the zero-free region of hardcore model on hypergraph.

As corollaries, we obtain efficient algorithms for:

- 1. approximating the partition function under the "sampling LLL condition",
- 2. approximating the number of *t*-size hypergraph independent sets.

#### Summary

We define the complex extensions of Markov chains and use it to improve the zero-free region of hardcore model on hypergraph.

As corollaries, we obtain efficient algorithms for:

- 1. approximating the partition function under the "sampling LLL condition",
- 2. approximating the number of *t*-size hypergraph independent sets.

## Open problems

- 1. Zero-freeness for general CSPs.
- 2. Does complex convergence imply zero-freeness?

#### Summary

We define the complex extensions of Markov chains and use it to improve the zero-free region of hardcore model on hypergraph.

As corollaries, we obtain efficient algorithms for:

- 1. approximating the partition function under the "sampling LLL condition",
- 2. approximating the number of *t*-size hypergraph independent sets.

# Thanks! Any questions?

## Open problems

- 1. Zero-freeness for general CSPs.
- 2. Does complex convergence imply zero-freeness?