Phase Transitions via Complex Extensions of Markov Chains

Yixiao Yu

Nanjing University

Joint work with Jingcheng Liu, Chunyang Wang and Yitong Yin

STOC 2025

Phase transition

water's phase transition

Phase transition and zero-freeness

Lee-Yang theory: phase transition \approx complex zeros of partition function.

Example of zero-free region

Example of spin system

Hardcore model

A graph G = (V, E), a vertex weight $\lambda > 0$.

 Ω : set of independent set.

Partition function
$$Z = \sum_{X \in \Omega} \lambda^{|X|}$$
. Gibbs distribution: $\forall X \in \Omega, \mu(X) = \frac{\lambda^{|X|}}{Z}$.

Hardcore model

A graph G = (V, E), a vertex weight $\lambda > 0$.

 Ω : set of independent set.

Partition function
$$Z = \sum_{X \in \Omega} \lambda^{|X|}$$
. Gibbs distribution: $\forall X \in \Omega, \mu(X) = \frac{\lambda^{|X|}}{Z}$.

Approximately sample an independent set in μ .

Approximately compute the partition function Z.

(They are equivalent by [Jerrum, Valiant, Vazirani'86]).

Hardcore model

A graph G = (V, E), a vertex weight $\lambda > 0$.

 Ω : set of independent set.

Partition function
$$Z = \sum_{X \in \Omega} \lambda^{|X|}$$
. Gibbs distribution: $\forall X \in \Omega, \mu(X) = \frac{\lambda^{|X|}}{Z}$.

phase transition!

0

$$\lambda_c(\Delta)$$

X

Hardcore model

A graph G = (V, E), a vertex weight $\lambda > 0$.

 Ω : set of independent set.

Partition function
$$Z = \sum_{X \in \Omega} \lambda^{|X|}$$
. Gibbs distribution: $\forall X \in \Omega, \mu(X) = \frac{\lambda^{|X|}}{Z}$.

Hardcore model A graph G = (V, E), a vertex weight $\lambda > 0$. Ω : set of independent set. Partition function $Z = \sum_{i} \lambda^{|X|}$. Gibbs distribution: $\forall X \in \Omega, \mu(X) = \frac{\lambda^{i}}{1 - 1}$ This implies an FPTAS by the $X \in \Omega$ polynomial interpolation method. Zero-freeness, $Z(\lambda) \neq 0$ [Bar16, PR17, LSS17] [Patel, Regts'17]

Easy

NP-Hard

Different notions of phase transition matching $\lambda_c(\Delta)$:

Zero-freeness: [Patel, Regts'17]

Different notions of phase transition matching $\lambda_c(\Delta)$:

Zero-freeness: [Patel, Regts'17]

Rapid mixing: [Chen, Liu, Vigoda'20, Chen, Liu, Vigoda'21, Chen, Feng, Yin, Zhang'22, Chen, Elden'22]

Different notions of phase transition matching $\lambda_c(\Delta)$:

Zero-freeness: [Patel, Regts'17]

Rapid mixing: [Chen, Liu, Vigoda'20, Chen, Liu, Vigoda'21, Chen, Feng, Yin, Zhang'22, Chen, Elden'22]

Different notions of phase transition matching $\lambda_c(\Delta)$:

Zero-freeness: [Patel, Regts'17]

Rapid mixing: [Chen, Liu, Vigoda'20, Chen, Liu, Vigoda'21, Chen, Feng, Yin, Zhang'22, Chen, Elden'22]

Different notions of phase transition matching $\lambda_c(\Delta)$:

Zero-freeness: [Patel, Regts'17]

Rapid mixing: [Chen, Liu, Vigoda'20, Chen, Liu, Vigoda'21, Chen, Feng, Yin, Zhang'22, Chen, Elden'22]

Decay of correlations: [Weitz'06]

Different notions of phase transition matching $\lambda_c(\Delta)$:

Zero-freeness: [Patel, Regts'17]

Rapid mixing: [Chen, Liu, Vigoda'20, Chen, Liu, Vigoda'21, Chen, Feng, Yin, Zhang'22, Chen, Elden'22]

Decay of correlations: [Weitz'06]

Connections among three notions

Hypergraph independent set

Hardcore model on hypergraph

A hypergraph $H=(V,\mathscr{E})$, a vertex weight $\lambda>0$.

 Ω set of hypergraph independent set.

Partition function
$$Z = \sum_{X \in \Omega} \lambda^{|X|}$$
.

Gibbs distribution:
$$\forall X \in \Omega, \mu(X) = \frac{\lambda^{|X|}}{Z}$$
.

Examples of hypergraph independent set

We consider the k-uniform hypergraph with maximum degree Δ .

Hypergraph independent set

Hardcore model on hypergraph

A hypergraph $H=(V,\mathscr{E})$, a vertex weight $\lambda>0$.

 Ω set of hypergraph independent set.

Partition function
$$Z = \sum_{X \in \Omega} \lambda^{|X|}$$
.

Gibbs distribution:
$$\forall X \in \Omega, \mu(X) = \frac{\lambda^{|X|}}{Z}$$
.

Examples of hypergraph independent set

We consider the k-uniform hypergraph with maximum degree Δ .

For $\lambda = 1$, Z is the number of HIS, μ is the uniform distribution of HIS.

Easy for $\Delta \lesssim 2^{k/2}$ ("sampling LLL condition") [HSZ19, HSW21, QWZ22, FGW+23].

NP-hard for $\Delta \geq 5 \cdot 2^{k/2}$ [BGG+19].

Rapid mixing of Markov chains

Approximate counting/sampling hypergraph independent sets under "sampling LLL conditions".

[Hermon, Sly, Zhang'19]: rapid mixing of Glauber dynamics.

[He, Sun, Wu'21, Qiu, Wang, Zhang'22]: perfect sampler.

[Feng, Guo, Wang, Wang, Yin'23]: local sampler.

They are all based on Markov chains through the lens of percolation.

Zero-freeness

[Galvin, McKinley, Perkins, Sarantis, Tetali'24] shows a zero-free disk centered at origin with radius $pprox rac{1}{e\Delta}$.

[Zhang'23] shows that for k-uniform linear hypergraph, there is a zero at $\lambda \approx -\frac{\log \Delta}{\Delta}$.

Zero-freeness

[Galvin, McKinley, Perkins, Sarantis, Tetali'24] shows a zero-free disk centered at origin with radius $pprox rac{1}{\mathrm{e}\Delta}$.

[Zhang'23] shows that for k-uniform linear hypergraph, there is a zero at $\lambda \approx -\frac{\log \Delta}{\lambda}$.

Zero-free region is lagging behind.

Existing tools for zero-free region can not capture the uniformity.

[GMP+24]
$$\lambda_c \approx \frac{1}{\Delta^{2/k} - 1}$$
 ("sampling LLL condition")
$$\lambda_c \approx \frac{1}{\Delta^{2/k} - 1}$$
 NP-Hard [BGG+19]

[Zhang'23]

Rapid mixing of Markov chains

[HSZ19, HSW21, QWZ22, FGW+23]

Our result - improved zero-free region from Markov chains

For k-uniform hypergraph with maximum degree Δ :

Our result - improved zero-free region from Markov chains

For k-uniform hypergraph with maximum degree Δ :

Corollaries of zero-freeness (in the same regime, informal):

- 1. FPTAS for approximating the partition function based on [Barvinok'16, Patel, Regts'17, Liu, Sinclair, Srivastava'17].
- 2. Central limit theorem and local central limit theorem based on [Michelen, Sahasrabudhe'19, Jain, Perkins, Sah, Sawhney'22].
- 3. FPTAS for approximating the number of *t*-size independent sets based on [Jain, Perkins, Sah, Sawhney'22].

A vertex weight
$$\lambda \in \mathbb{C} \setminus \{-1\}$$
.
 Ω = set of hypergraph independent sets.
Partition function $Z = \sum_{X \in \Omega} \lambda^{|X|}$.

Complex Gibbs measure: $\forall X \in \Omega, \mu(X) = \frac{\lambda^{|X|}}{Z}$.

We analyze complex Gibbs measure in a manner of distributions.

Normalized measure: $\mu(\Omega) = 1$.

Conditional measure:
$$\mu(\cdot \mid A) = \frac{\mu(\cdot \land A)}{\mu(A)} \ (\mu(A) \neq 0).$$

Independence: $\mu(A_1 \cap A_2) = \mu(A_1) \cdot \mu(A_2)$.

Law of total measure:
$$\mu(B) = \sum_{i=1}^{m} \mu(B \cap A_i)$$

$$(A_i$$
s are disjoint and $\bigcup_i A_i = \Omega)$

Complex measure μ over measurable space (Ω, \mathcal{F})

For distributions, we have monotonicity:

For two events
$$B \subseteq A$$
, it holds that $\mathbb{P}[B] \leq \mathbb{P}[A]$.

Hard to bound Easy to bound

For complex measure, monotonicity does not hold anymore!

For distributions, we have monotonicity:

For two events
$$B \subseteq A$$
, it holds that $\mathbb{P}[B] \leq \mathbb{P}[A]$.

Hard to bound Easy to bound

For complex measure, monotonicity does not hold anymore!

$$A \qquad 2 \qquad B \qquad B \subseteq A, \text{ but } \left| \mu(B) \right| > \left| \mu(A) \right|$$

For complex measure, we use "zero-one law" to recover monotonicity.

For two events $B \subseteq A$, it holds that

$$|\mu(B)| = |\mu(A \wedge B)| = |\mu(A)| \cdot |\mu(B \mid A)| \le |\mu(A)|.$$

A is a witness of B.

The key is to design a witness A, such that $\mu(B \mid A) \in \{0,1\}$ and $|\mu(A)|$ is easy to deal with.

Start with an independent set. In each update:

- 1. Choose a vertex v u.a.r.;
- 2. Update v.

Classical Glauber dynamics

Update rule of classical Glauber dynamics

Update rule of complex Glauber dynamics

Update rule of complex Glauber dynamics

Decomposition: decompose each transition into oblivious part and non-oblivious part.

Decomposition: decompose each transition into oblivious part and non-oblivious part.

Decomposition: decompose each transition into oblivious part and non-oblivious part.

Decomposition: decompose each transition into oblivious part and non-oblivious part.

Complex Glauber dynamics -> Complex percolation process

Decomposition: decompose each transition into oblivious part and non-oblivious part.

Complex Glauber dynamics -> Complex percolation process

We use our zero-one law to bound these norms.

We use complex percolation to analyze the complex systematic scan Glauber dynamics.

We show in this strip, complex systematic scan Glauber dynamics converges and $Z(\lambda) \neq 0$.

Zero-freeness

Complex Gibbs measure

$$\mu_H(\sigma_e = 1^{|e|}) \bigg| < 1$$

By standard edge-wise self-reducibility, it suffices to bound the norm of a complex marginal measure.

Complex Gibbs measure

$$\left| \mu_H(\sigma_e = 1^{|e|}) \right| < 1$$

T-step complex Glauber dynamics $\sigma_e = 1^{|e|}$

Expressing the complex Gibbs measure via the complex Glauber dynamics.

Zero-freeness

Complex Gibbs measure

$$\left| \mu_H(\sigma_e = 1^{|e|}) \right| < 1$$

T-step complex Glauber dynamics $\sigma_e = 1^{|e|}$

Contributions independent of the initial state

+

Contributions dependent on the initial state

Contributions independent of the initial state Contributions dependent on the initial state This part diminishes to 0.

Complex percolation

Complex percolation

Summary

We define the complex extensions of Markov chains and use it to improve the zero-free region of hardcore model on hypergraph.

As corollaries, we obtain efficient algorithms for:

- 1. approximating the partition function under the "sampling LLL condition",
- 2. approximating the number of *t*-size hypergraph independent sets.

Summary

We define the complex extensions of Markov chains and use it to improve the zero-free region of hardcore model on hypergraph.

As corollaries, we obtain efficient algorithms for:

- 1. approximating the partition function under the "sampling LLL condition",
- 2. approximating the number of *t*-size hypergraph independent sets.

Open problems

- 1. Zero-freeness for general CSPs.
- 2. Does complex convergence imply zero-freeness?

Summary

We define the complex extensions of Markov chains and use it to improve the zero-free region of hardcore model on hypergraph.

As corollaries, we obtain efficient algorithms for:

- 1. approximating the partition function under the "sampling LLL condition",
- 2. approximating the number of *t*-size hypergraph independent sets.

Thanks! Any questions?

Open problems

- 1. Zero-freeness for general CSPs.
- 2. Does complex convergence imply zero-freeness?